10 KiB
JVM 相关口水话
目录
- 内存区域
- 内存模型
- 内存分配回收策略
- Java 对象的创建、内存布局和访问定位
- GC
- 类加载机制
- 双亲委派模型
- 编译器优化
- 虚拟机相关
- HotSpot 及 JIT
- Dalvik
- ART 及 AOT
内存区域
Java 中的运行时数据可以划分为两部分,一部分是线程私有的,包括虚拟机栈、本地方法栈、程序计数器,另一部分是线程共享的,包括方法区和堆。
程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行指示器。虚拟机栈描述的是 Java 方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧用于存储局部变量表、操作数栈、动态链接地址、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈桢在虚拟机中入栈和出栈的过程。本地方法栈和虚拟机栈所发挥的作用是非常相似的,只不过本地方法栈描述的是 Native 方法执行的内存模型。
Java 堆是所有线程共享的一块数据区域,主要用来存放对象实例。它也是垃圾收集器管理的主要区域,从内存回收的角度来看,由于现代收集器基本上都采用分代回收,所以 Java 堆还可以细分为新生代和老年代。再细致一点还可以把新生代划分为 Eden 区、From Survivor 区和 To Survivor 区。从内存分配的角度来看,线程共享的 Java 堆中可能划分为多个线程私有的分配缓冲区 TLAB。不过不论如何划分,都与存放内容无关,无论哪个区域,存放的都是对象实例,进一步划分的目的是为了更好的回收内存或者更快的分配内存。方法区是用于存储已被虚拟机加载的类信息、常量、静态变量、即使编译器编译后的代码等数据。JVM 对方法区的限制比较宽松,除了和 Java 堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾回收。相对而言,垃圾回收在这个区域是比较少出现的。运行时常量池是方法区的一部分,它用来存储编译期生成的各种字面量和符号引用。运行时常量池相比 Class 文件常量池一个重要的特点是具备动态性,也就是在运行期间也可能将新的常量放入池中,比如 String 的 intern 方法。
内存模型
JMM 内存模型是用来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让 Java 程序在各个平台下都能达到一致的内存访问效果。
Java 内存模型规定了所有的共享变量都是存储在主内存,每个线程还有自己的工作内存,线程的工作内存保存了该线程使用到的共享变量的主内存副本拷贝,线程对变量的操作都必须在工作内存中进行,而不能直接读写主内存中的变量,不同的线程之间也无法直接访问对方工作内存中的数据,线程间变量值的传递均需要主内存来完成。
那么为什么要这么做呢?
其实就要讲到一些硬件知识了,我们知道 CPU 执行的速度是远超于内存访问速度,为了中和这种速度差异,在 CPU 和内存直接会加入多个 CPU 缓存,比如 L1、L2、L3。CPU 在处理数据时会先把内存中的数据读到自己的 CPU 缓存中,然后在缓存中进行操作数据,最后再把数据同步到内存中。这里,就可以把 CPU 的缓存看成是线程的工作内存,而把内存看成是主内存,虽然这个说法并不严谨,但是易于理解。
内存分配回收策略
内存分配回收策略包含三点:
-
对象优先在 Eden 区分配
准确的来说,是优先在 Eden 区的 TLAB 上分配,如果 Eden 区没有足够的空间进行分配时,就会触发一次 Minor GC。
-
大对象直接进入老年代
所谓的大对象是指需要连续大量内存空间的 Java 对象,比如数组,一般来说,超过 3M 的对象会直接在老年代进行分配。
-
长期存活的对象进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收就必须得识别哪些对象应放在新生代还是老年代。为了做到这一点,虚拟机给每个对象定义了一个对象年龄计数器。如果对象在 Eden 出生并经过一次 Minor GC 后仍然存活,并且能被 Survivor 容纳的话,将会被移到 Survivor 空间中,并且对象年龄设置为 1.对象每在 Survivor 区熬过一次 Minor GC,年龄就会增加 1。当年龄增加到一定程度,默认是 15,就将会晋升到老年代中。
最后讲一下 Minor GC 和 Full GC。
Minor GC 是指发生在新生代的垃圾回收动作,因为 Java 对象大多都是朝生夕死的,所以 Minor GC 比较频繁,回收速度也比较快。
Full GC/Major GC 指发生在老年代的 GC,出现 Full GC 经常会伴随着至少一次的 Minor GC,Full GC 一般会比 Minor GC 慢十倍以上。
Java 对象的创建、内存布局和访问定位
先说对象创建,在虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已经被加载过了,如果没有就走类加载流程。在类加载检查通过之后,虚拟机就会为新生对象分配内存,对象所需内存在类加载完成之后就确定了。为对象分配内存空间就等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有指针碰撞和空闲列表两种,选择那种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否具有压缩整理功能决定。对象创建在虚拟机是非常频繁的行为,即使是仅仅修改了一个指针指向的位置,在并发情况下也不是线程安全的。解决方案有两种,一种是采用 CAS 配上失败重试,另一种是使用线程私有的分配缓冲区 TLAB。
接着是对象的内存布局,在 HotSpot 虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头、实例数据和对其填充。可以使用 OpenJDK 开源的 JOL 工具查看对象的内存布局,直接 new Object 所占用的大小为 16 字节,即 12 个字节的对象头 + 4 个字节的对其填充。JOL 对分析集合源码扩容、HashMap 的 hash 冲突等非常有用。
最后是对象的访问定位,Java 程序需要通过栈上的 reference 数据来操作堆上的具体对象,由于 reference 类型在 Java 虚拟机规范中只规定了一个指向对象的引用,并没有规定这个引用应该通过什么方式去定位和访问堆中的对象,所以对象访问方式也是取决于虚拟机实现而定。目前主流的方式有使用句柄和直接指针两种。使用句柄,就是相当于加了一个中间层,在对象移动时只会改变句柄中的实例数据的指针,reference 本身不需要改变。HotSpot 使用的是第二种,使用直接指针的方式访问的最大好处就是速度很快。
类加载机制和双亲委派模型
虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验、解析和初始化,最终形成可以被虚拟机直接使用的 Java 对象,这就是虚拟机的类加载机制。
类加载流程分为五个阶段,分别是加载、验证、准备、解析和初始化。
加载阶段,就是通过一个类的全限定名来获取定义此类的二进制字节流,将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。加载阶段是开发人员可控性最强的阶段,因为开发人员可以自定义类加载器。对于数组而言,情况有所不同,数组类本身不通过类加载器创建,它是由 Java 虚拟机直接创建。
验证是链接阶段的第一步,这一阶段的目的是为了确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。它包括文件格式校验、元数据校验、字节码校验等。
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。需要注意的是,这时候进行内存分配的仅仅包含类变量,不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在 Java 堆上。其次,这里所说的变量初始值是该数据类型的零值。
解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。符号引用以一组符号来描述所引用的目标,直接引用可以是直接指向目标的指针。
初始化阶段是执行类构造器 <clinit>() 方法的过程。<clinit>() 方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的。虚拟机会保证一个类的 <clinit>() 方法再多线程环境中被正确的加锁同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的 <clinit>() 方法,其他线程都需要阻塞等待,这也是静态内部类能实现单例的主要原因之一。
双亲委派模型
双亲委派模型的工作过程是:如果一个类加载器收到类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一层次的类加载器都是如此,因此所有的类加载请求最终都应该传送给顶层的启动类加载器中,只有当父类加载器反馈自己无法完成这个加载请求时,子加载器才会尝试自己去加载。
使用双亲委派模型来组织类加载器之间的关系,有一个显而易见的好处就是 Java 类随着它的类加载器一起具备了一种带有优先级的层次关系。比如 Object 类,无论哪个类加载器去加载,应用程序各种加载器环境中都是同一个类,同时也避免了重复加载。而且,双亲委派模型也保重了 Java 程序的稳定运作。比如在应用程序中你是不能直接使用 UnSafe 这一不安全操作的类的。
双亲委派模型的实现相对简单,代码都集中在 ClassLoader 的 loadClass 方法中先检查是否已经被加载过了,如果没加载则先调用父加载器的 loadClass 方法,若父加载器为空则使用默认的启动类加载器作为父加载器。如果父加载器加载失败,抛出 ClassNotFoundException 异常,然后调用自己的 findClass 方法进行加载。