FFmpeg有专门的内存管理系统,包括:内存分配、内存拷贝、内存释放。其中内存分配包含分配内存与对齐、内存分配与清零、分配指定大小的内存块、重新分配内存块、快速分配内存、分配指定最大值的内存、分配数组内存、快速分配数组内存、重新分配数组内存。 FFmpeg的内存管理位于libavutil/mem.c,相关函数如下图所示: ![img](https://img-blog.csdnimg.cn/ec570c9e0f8f49fdb21ec2819acee3d9.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5b6Q56aP6K6wNDU2,size_20,color_FFFFFF,t_70,g_se,x_16) 一、内存分配 1、av_malloc av_malloc()内存分配,并且内存对齐,方便系统快速访问内存。代码如下: ```c void *av_malloc(size_t size) { void *ptr = NULL; if (size > max_alloc_size) return NULL; #if HAVE_POSIX_MEMALIGN if (size) if (posix_memalign(&ptr, ALIGN, size)) ptr = NULL; #elif HAVE_ALIGNED_MALLOC ptr = _aligned_malloc(size, ALIGN); #elif HAVE_MEMALIGN #ifndef __DJGPP__ ptr = memalign(ALIGN, size); #else ptr = memalign(size, ALIGN); #endif /* Why 64? * Indeed, we should align it: * on 4 for 386 * on 16 for 486 * on 32 for 586, PPro - K6-III * on 64 for K7 (maybe for P3 too). * Because L1 and L2 caches are aligned on those values. * But I don't want to code such logic here! */ /* Why 32? * For AVX ASM. SSE / NEON needs only 16. * Why not larger? Because I did not see a difference in benchmarks ... */ /* benchmarks with P3 * memalign(64) + 1 3071, 3051, 3032 * memalign(64) + 2 3051, 3032, 3041 * memalign(64) + 4 2911, 2896, 2915 * memalign(64) + 8 2545, 2554, 2550 * memalign(64) + 16 2543, 2572, 2563 * memalign(64) + 32 2546, 2545, 2571 * memalign(64) + 64 2570, 2533, 2558 * * BTW, malloc seems to do 8-byte alignment by default here. */ #else ptr = malloc(size); #endif if(!ptr && !size) { size = 1; ptr= av_malloc(1); } #if CONFIG_MEMORY_POISONING if (ptr) memset(ptr, FF_MEMORY_POISON, size); #endif return ptr; }2、av_mallocz av_mallocz()是在av_malloc()基础上,调用memset()进行内存清零: ``` ```c void *av_mallocz(size_t size) { void *ptr = av_malloc(size); if (ptr) memset(ptr, 0, size); return ptr; } ``` 3、av_malloc_array av_malloc_array()先计算数组所需要内存块大小,然后用av_malloc()分配数组内存: ```c void *av_malloc_array(size_t nmemb, size_t size) { size_t result; if (av_size_mult(nmemb, size, &result) < 0) return NULL; return av_malloc(result); } ``` 4、av_mallocz_array av_mallocz_array()先计算数组所需要内存块大小,然后用av_mallocz()分配数组内存: ```c void *av_mallocz_array(size_t nmemb, size_t size) { size_t result; if (av_size_mult(nmemb, size, &result) < 0) return NULL; return av_mallocz(result); } ``` 5、av_calloc av_calloc()操作与av_mallocz_array(),先计算内存大小再用av_mallocz()分配内存: ```c void *av_calloc(size_t nmemb, size_t size) { size_t result; if (av_size_mult(nmemb, size, &result) < 0) return NULL; return av_mallocz(result); } ``` 6、av_max_alloc av_max_alloc()主要是指定分配内存的最大值: ```c static size_t max_alloc_size= INT_MAX; void av_max_alloc(size_t max) { max_alloc_size = max; } ``` 在av_malloc()用于判断size是否超出最大值: ```c void *av_malloc(size_t size) { void *ptr = NULL; if (size > max_alloc_size) return NULL; ...... }7、av_realloc av_realloc()是对系统的realloc函数进行封装,重新分配内存块: ``` ```c void *av_realloc(void *ptr, size_t size) { if (size > max_alloc_size) return NULL; #if HAVE_ALIGNED_MALLOC return _aligned_realloc(ptr, size + !size, ALIGN); #else return realloc(ptr, size + !size); #endif } ``` 8、av_realloc_array av_realloc_array()先计算内存块大小,然后用av_realloc()重新分配数组内存: ```c void *av_realloc_array(void *ptr, size_t nmemb, size_t size) { size_t result; if (av_size_mult(nmemb, size, &result) < 0) return NULL; return av_realloc(ptr, result); } ``` 9、av_fast_realloc av_fast_realloc()快速重新分配内存,如果原始内存块足够大直接复用: ```c void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size) { if (min_size <= *size) return ptr; if (min_size > max_alloc_size) { *size = 0; return NULL; } min_size = FFMIN(max_alloc_size, FFMAX(min_size + min_size / 16 + 32, min_size)); ptr = av_realloc(ptr, min_size); /* we could set this to the unmodified min_size but this is safer * if the user lost the ptr and uses NULL now */ if (!ptr) min_size = 0; *size = min_size; return ptr; } ``` 10、av_fast_malloc av_fast_malloc()快速分配内存: ```c void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size) { ff_fast_malloc(ptr, size, min_size, 0); } ``` 其中ff_fast_malloc()代码位于libavutil/mem_internal.h: ```c static inline int ff_fast_malloc(void *ptr, unsigned int *size, size_t min_size, int zero_realloc) { void *val; memcpy(&val, ptr, sizeof(val)); if (min_size <= *size) { av_assert0(val || !min_size); return 0; } min_size = FFMAX(min_size + min_size / 16 + 32, min_size); av_freep(ptr); val = zero_realloc ? av_mallocz(min_size) : av_malloc(min_size); memcpy(ptr, &val, sizeof(val)); if (!val) min_size = 0; *size = min_size; return 1; } ``` 11、av_fast_mallocz av_fast_mallocz()快速分配内存,并且内存清零: ```c void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size) { ff_fast_malloc(ptr, size, min_size, 1); } ``` 二、内存拷贝 1、av_strdup av_strdup()用于重新分配内存与拷贝字符串: ```c char *av_strdup(const char *s) { char *ptr = NULL; if (s) { size_t len = strlen(s) + 1; ptr = av_realloc(NULL, len); if (ptr) memcpy(ptr, s, len); } return ptr; } ``` 2、av_strndup av_strndup()用于分配指定大小内存与拷贝字符串,先用memchr()获取有效字符串长度,然后使用av_realloc()重新分配内存,再用memcpy()拷贝字符串: ```c char *av_strndup(const char *s, size_t len) { char *ret = NULL, *end; if (!s) return NULL; end = memchr(s, 0, len); if (end) len = end - s; ret = av_realloc(NULL, len + 1); if (!ret) return NULL; memcpy(ret, s, len); ret[len] = 0; return ret; } ``` 3、av_memdup av_memdup()用于内存分配与内存拷贝,先用av_malloc()分配内存,再用memcpy()拷贝内存: ```c void *av_memdup(const void *p, size_t size) { void *ptr = NULL; if (p) { ptr = av_malloc(size); if (ptr) memcpy(ptr, p, size); } return ptr; } ``` 4、av_memcpy_backptr av_memcpy_backptr()用于内存拷贝,与系统提供的memcpy()类似,并且考虑16位、24位、32位内存对齐: ```c void av_memcpy_backptr(uint8_t *dst, int back, int cnt) { const uint8_t *src = &dst[-back]; if (!back) return; if (back == 1) { memset(dst, *src, cnt); } else if (back == 2) { fill16(dst, cnt); } else if (back == 3) { fill24(dst, cnt); } else if (back == 4) { fill32(dst, cnt); } else { if (cnt >= 16) { int blocklen = back; while (cnt > blocklen) { memcpy(dst, src, blocklen); dst += blocklen; cnt -= blocklen; blocklen <<= 1; } memcpy(dst, src, cnt); return; } if (cnt >= 8) { AV_COPY32U(dst, src); AV_COPY32U(dst + 4, src + 4); src += 8; dst += 8; cnt -= 8; } if (cnt >= 4) { AV_COPY32U(dst, src); src += 4; dst += 4; cnt -= 4; } if (cnt >= 2) { AV_COPY16U(dst, src); src += 2; dst += 2; cnt -= 2; } if (cnt) *dst = *src; } ``` } 三、内存释放 1、av_free av_free()用于释放内存块,主要是调用系统free()进行释放。如果宏定义了对齐分配,那么要对齐释放: ```c void av_free(void *ptr) { #if HAVE_ALIGNED_MALLOC _aligned_free(ptr); #else free(ptr); #endif } ``` 2、av_freep av_freep()用于释放内存指针,先备份内存指针,然后把指针地址清空,再释放内存: ```c void av_freep(void *arg) { void *val; memcpy(&val, arg, sizeof(val)); memcpy(arg, &(void *){ NULL }, sizeof(val)); av_free(val); } ```