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Abstract—H.264/AVC is the latest video coding standard. It signifi-
cantly outperforms the previous video coding standards, but the extraordi-
nary huge computation complexity and memory access requirement make
the hardwired codec solution a tough job. This paper describes the de-
sign methodology for H.264/AVC video codec. The system architecture and
scheduling will be addressed. The design consideration and optimization
for its significant modules including bandwidth optimized motion compen-
sation engine, reconfigurable intra predictor generator, low bandwidth par-
allel integer motion estimation will be mentioned. Due to the complex,
sequential, and highly data-depended characteristics of all essential algo-
rithms in H.264/AVC, not only the pipeline structure but also efficient mem-
ory hierarchy is required. The design case with a hybrid task pipelining
scheme, a balanced schedule with block-level, MB-level, and frame-level
pipelining, will be presented. By combining with many bandwidth reduc-
tion techniques and data reused schemes, very efficient architecture and im-
plementation for plate-form based system is proved by the prototype chips.

I. INTRODUCTION

H.264/AVC is the new video coding standard. It can
save 25%-45% and 50%-70% of bitrates when compared with
MPEG-4 Advanced Simple Profile (ASP) [1] and MPEG-2 [2],
respectively [3]. Although motion compensated transform cod-
ing is still adopted, many new features are used to achieve
much better compression performance and subjective quality,
such as quarter-pixel Motion Estimation (ME) with Multiple
Reference Frames (MRF) and Variable Block Sizes (VBS), in-
tra prediction, Context-based Adaptive Variable Length Coding
(CAVLC), and in-loop deblocking filter [4][5][6]. The rate-
distortion optimized mode decision [3] is also included in ref-
erence software [7] to improve rate-distortion efficiency.

There are many potential applications of H.264/AVC. On-
going applications range from High Definition Digital Video
Disc (HD-DVD) or BluRay for living room entertainment with
large screens to Digital Video Broadcasting for Handheld ter-
minals (DVB-H) with small screens. However, the H.264/AVC
coding performance comes at the price of computation complex-
ity. According to the instruction profiling with HDTV1024P
(2048×1024, 30fps) specification, H.264/AVC decoding pro-
cess requires 83 Giga-Instructions Per Second (GIPS) computa-
tion and 70 Giga-Bytes Per Second (GBPS) memory access. As
for H.264/AVC encoder, up to 3600 GIPS and 5570 GBPS are
required for HDTV720P (1280×720, 30fps) specification. For
real-time applications, accelerating by the dedicated hardware is
a must.

However, it is difficult to design an system architecture for
the H.264/AVC codec. The design for the significant modules
are also very challenging. Besides high computation complexity
and memory access, the coding path is very long, which includes
prediction, reconstruction, and entropy coding. The reference
software adopts many sequential processing of each block in the
MacroBlock (MB), which restricts the parallel processing. The
block-level reconstruction loop caused by intra prediction in-

duces the bubble cycles and decreases the hardware utilization
and throughput. The coding tools involve with many data depen-
dencies to enhance the coding performance, but the considerable
storage space is the penalty. There are functionalities that have
multiplex modes, and the re-configurable engine is essential to
achieve resource sharing.

To address these difficulties, the hardware design methodol-
ogy is described for H.264/AVC video coding system in this
paper. There are three critical issues to be addressed. First,
for H.264/AVC encoder, the traditional two-stage MB pipelines
cannot be efficiently applied because of the long critical path
and feedback loop. According to our analysis, five major func-
tions are extracted and mapped into four stage MB pipelining
structure with suitable task scheduling. Second, a hybrid task
pipelining scheme is presented with a balanced schedule with
block-level, MB-level, and frame-level pipelining to greatly re-
duce the internal memory size and bandwidth. Third, the design
consideration and optimization for the significant modules, in-
cluding bandwidth optimized Motion Compensation (MC) en-
gine, reconfigurable intra predictor generator, low bandwidth
parallel IME are involved. The design cases show that efficient
implementation for H.264/AVC video coding system is achiev-
able by combining these efficient architectures.

The rest of this paper is organized as follows. In Section II,
the profiling and the design considerations are described. Then,
the architecture optimization of H.264/AVC encoding system
will be addressed in Section III. Those of H.264/AVC decod-
ing parts are mentioned in Section IV. These architectures are
proved by the prototype chips, which will be described in Sec-
tion V. Finally, we will make a conclusion in Section VI.

II. ANALYSIS AND DESIGN SPACE EXPLORATION

A. Profiling

We use instruction profile to show the high computation com-
plexity and memory access of H.264/AVC, and find the critical
parts for hardware implementation. The iprof [8], a software an-
alyzer at the instruction level, is used to profile an H.264/AVC
encoder at a processor-based platform (SunBlade 2000 work-
station, 1.015GHz Ultra Sparc II CPU, 8GB RAM, Solaris 8).
To focus on the target specification, a software C model is
developed by extracting all baseline profile compression tools
from reference software [7]. Our focused design case is mainly
targeted for SDTV (720×480, 30fps)/HDTV720P videos with
four/one reference frame. The computational complexity and
memory access for SDTV/HDTV720P are 2470/3600 GIPS and
3800/5570 GBPS. As for decoder with HDTV-1024P video for-
mats. 83 GIPS and 70 GBPS of computation and memory access
are required. The huge computational loads are far beyond the
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The intra prediction requires the reconstructed pixels of the left and top
neighboring blocks, which induce the MB-level and block-level reconstruc-
tion loops.

capability of today’s general purpose processors (GPPs). The
dedicated hardware is essential for real-time applications.

B. Design Space Exploration

The considerations of hardware design are analyzed with the
H.264/AVC compression algorithms. The major challenges are
described as follows.
• Computation Complexity and Bandwidth Requirement:
According to the profiling, H.264/AVC requires much more
computation complexity than previous coding standards. this
will greatly increase the hardware cost especially for the HDTV
applications. The bandwidth requirement of H.264/AVC encod-
ing system is also much higher than previous coding standard.
The MRF-ME contributes the most traffic for loading reference
pixels. Neighboring reconstructed pixels are required by intra
prediction, and are also required by deblocking filter. Besides,
Lagrangian mode decision and context-adaptive entropy coding
have data dependencies between neighboring MB, and transmit-
ting related information contribute considerable bandwidth as
well. An efficient memory hierarchy combined with data shar-
ing and Data Reuse (DR) scheme must be designed to reduce
the system bandwidth.
• Sequential Flow: The H.264/AVC reference software adopts
many sequential process to enhance the compression perfor-
mance. It is hard to efficiently map the sequential algorithm to
parallel hardware. For system architecture, we partition the se-
quential encoding process ( prediction, reconstruction, and then
entropy encoding ) into several tasks and process them in MB-
based pipelining structure, which improves the hardware utiliza-
tion and the throughput. For module architecture, this problem
is critical for ME since ME is the most computationally inten-
sive part and requires the most degrees of parallelism. The inter
Lagrangian mode decision takes MV costs into consideration.
The MV of each block is generally medium predicted by left,
top, and top-right neighboring blocks. The cost function can be
computed only after prediction modes of neighboring blocks are
determined, which also causes inevitable sequential processing.
The modified hardware-oriented algorithms can be designed to
enable parallel processing.
• Coding Loops: In traditional video coding standard, there

is a frame-level reconstruction loop generating the reference
frames for ME and MC. In H.264/AVC, the intra prediction re-
quires the reconstructed pixels of the left and top neighboring
blocks, which induce the MB-level and block-level reconstruc-
tion loops. For the MB-level reconstruction loop as shown in
Fig. 1 (a), the reconstructed pixels of MB-a, MB-b, and MB-
c are used to predict the pixels in MB-x for I16MB. Not until
MB-a, MB-b, and MB-c are reconstructed can MB-x be pre-
dicted. Similarly, as Fig. 1 (b) shows, in order to support I4MB,
not until 4×4-intra mode of B-a, B-b, B-c, and B-d are decided
and reconstructed can B-x be processed. The reconstructed la-
tency is harmful to hardware utilization and throughput if the in-
tra prediction and reconstruction are not jointly considered and
scheduled.
• Data Dependency: The new coding tools improve the com-
pression performance with many data dependencies. The frame-
level data dependencies contribute the considerable system
bandwidth. The dependencies between neighboring MBs con-
strain the solution space of MB pipelining, and those between
neighboring blocks limit the possibility of parallel processing.
• Abundant Modes: There are many algorithms of H.264/AVC
that have multiplex modes. For example, there are 17 differ-
ent modes for intra prediction while 259 kinds of partitions
for inter prediction. Six kinds of 2-D transform, 4×4/2×2
DCT/IDCT/Hadamard transform, are involved in reconstruction
loops. The reconfigurable processing engine, reusable predic-
tion core, and appropriate pipeline system design are important
to efficiently support all these functions.

C. Related Works

The conventional two-stage MB pipelining architecture
[9][10] is widely adopted in prior video encoding hardware de-
signs. Two MBs are processed simultaneously by prediction en-
gine (ME only) and Block Engine (BE, including MC, recon-
struction loop, and entropy coding) in pipeline manner. Several
problems will be encountered if the two-stage MB pipelining is
directly applied to H.264/AVC encoding. The prediction stage
includes IME, FME, and intra prediction in H.264/AVC. The
sequential prediction flow will make high operation frequency
and low hardware utilization. Besides, because of MB-level and
block-level reconstruction loops, it is impossible to completely
separate the prediction and BE stages. The large bandwidth
must also be reduced by efficient memory hierarchy and data
reuse scheme.

Furthermore, because of the new funcationalities of
H.264/AVC, the advanced module architectures are demanded
for H.264/AVC encoder. IME is the most computationally in-
tensive part in the encoder. Several IME architectures are pro-
posed for VBSME [11] [12] [13][14] with different specifica-
tions. The main challenge for FME is to achieve parallel pro-
cessing under the constraints of sequential Lagrangian mode
decision. Besides, the functionalities of the VBS, MRF, 6-tap
FIR, and Hadamard transform are involved. In [15], FME pro-
cedure is analyzed and decomposed into several loops. The
fully pipelined architecture is designed with unfolding tech-
niques and efficient scheduling. In [16], the forward/inverse
multi-transform are designed to support 4×4 DCT, IDCT, and
Hadamard transforms. The first deblocking filter propose the ad-
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Fig. 2. Block diagram of the H.264/AVC encoding system. Five major tasks, including IME, FME, IP, EC, and DB, are partitioned from the sequential encoding
procedure and processed MB by MB in pipeline structure.

vanced filtering schedule to save 50% on-chip bandwidth [17].
A column addressing technique used to favor the direction of
vertical filtering is then proposed in [18] to increase the through-
put. In [19], the architecture is further improved by interleav-
ingly filtering the the horizontal and vertical edges. As for
entropy encoder, the single buffer CAVLC architecture [20] is
designed for SDTV specification. The dual-buffer architecture
with block pipelining is proposed in [21] to double the hardware
utilization and throughput.

III. H.264/AVC ENCODING SYSTEM

This section describes a new MB pipelining scheme for
H.264/AVC encoder. The traditional two-stage MB pipelining
[9][10], prediction (ME only) and BE, cannot be efficiently ap-
plied to H.264/AVC. In this encoding system, five major func-
tions are extracted and mapped into four MB pipelining stages
with suitable task scheduling [22]. Furthermore, the design con-
sideration and optimization for the significant modules is de-
scribed to enable the whole system. The efficient implementa-
tion for H.264/AVC encoding system is achieved by combining
these techniques.

A. Four-Stage Macroblock Pipelining

The system architecture is shown in Fig. 2. Five major tasks,
including IME, FME, Intra Prediction with reconstruction loop
(IP), Entropy Coding (EC), and in-loop DeBlocking filter (DB),
are partitioned from the sequential encoding procedure and pro-
cessed MB by MB in pipeline structure.

Several issues are described as follows. The prediction, which
is ME only in previous standards, includes IME, FME, and in-
tra prediction in H.264/AVC. Because of the algorithms diver-
sities and different computation complexity, it is difficult to im-
plement IME, FME, and intra prediction by the same hardware.
Putting IME, FME, and intra prediction in the same MB pipelin-
ing stage leads to very low utilization. Even if the resource
sharing is achieved, the operating frequency becomes too high
due to the sequentially processing. Therefore, FME is firstly
pipelined MB by MB after IME to double the throughout. As
for intra prediction, because of MB-level and block-level recon-
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Fig. 3. The MB schedule of four stage MB pipelining. The horizontal arrow de-
notes the time line. One horizontal column indicates the MBs with different
tasks that are processed in parallel.

struction loop, it cannot be separated with the reconstruction en-
gine. Besides, the reconstruction process should be separated
from ME and pipelined MB by MB to achieve highest hard-
ware utilization. Therefore, engines of intra prediction together
with forward/inverse transform/quantization should be located
in the IP stage. In this way, the MB-level and block-level re-
construction loops can also be isolated in this pipelining stage.
The EC encodes the MB header and residues after mode deci-
sion and prediction. The DB generates the standard-compliant
reference frame after reconstruction. Since the EC/DB can be
processed in parallel, they are placed at the 4th stage. The ref-
erence frame will be stored in external memory for the ME of
the next frame, which constructs the frame-level reconstruction
loop. Please note that, the luma MC is placed in FME stage
for reuse of Luma Ref. Pels SRAMs and interpolation circuits.
The compensated MB is transmitted to IP stage for generation
of residues after intra/inter mode decision. On the other hand,
chroma MC is implemented in IP stage since it is not required
before intra/inter mode decision.

MBs within one frame are coded in raster order with sched-
ule in Fig. 3. The horizontal arrow denotes the time line. One
horizontal column indicates the MBs with different tasks that
are processed in parallel. As for reduction in system bandwidth,
many on-chip memories are used for three purposes. First, in



order to find the best matched candidate, a huge amount of ref-
erence data are required for both IME and FME. Since pixels in
neighboring candidate blocks are considerably overlapped, and
so are the SWs of neighboring current MBs, the bandwidth of
system bus can be greatly reduced by designing local buffers
to store reusable data. Second, instead of transmitted by sys-
tem bus, the raw data such as luma motion compensated MB,
transformed and quantized residues, and reconstructed MB are
shifted forward via shared memories. Third, because of data
dependency, a MB is processed according to the upper and left
MBs. The local memories are used to store the related data dur-
ing the encoding process. For software implementation, the ex-
ternal bandwidth requirement is up to 5570 TBPS. As for hard-
ware solution with local search window buffer embedded, the
external bandwidth requirement is reduced to 700 MBPS. Af-
ter all three techniques are applied, the final external bandwidth
requirement is about 280 Mbytes/sec.

B. Low-Bandwidth Parallel Integer Motion Estimation

IME requires the most computational complexity and mem-
ory bandwidth in H.264/AVC. Besides, it is a kind of sequen-
tial flow due to the Lagrangian mode decision flow. However,
a large degree of parallelism is required for the SDTV/HDTV
specifications. In the following, techniques in algorithmic and
architectural levels are used to enable parallel processing and to
reduce the required hardware resources.

B.1 Hardware-Oriented Algorithm

The Motion Vector (MV) of each block is generally predicted
by the medium values of MVs from the left, top, and top right
neighboring blocks. The rate term of the Lagrangian cost func-
tion can be computed only after MVs of neighboring blocks are
determined, which causes inevitable sequential processing. The
blocks and subblocks in a MB cannot be processed in paral-
lel. Moreover, when a MB is processed at the IME stage, its
previous MB is still in the FME stage. The MB mode and the
best MVs of the left MB cannot be obtained in the four-stage
MB pipelining architecture. To solve these problems, the exact
MVPs are replaced by modified MVPs, which is the medium of
MVs from top-left, top, and top-right MBs. In addition, the
modified MVP is applied for all of the 41 blocks in MB, as
shown in Fig. 4. For example, the exact MV cost of the C22
4×4-block is the medium of the C12, C13, and C21 MVs. The
MVPs of all 41 blocks are changed to the medium of MV0,
MV1, and MV2 in order to facilitate the parallel processing and
MB pipelining.

As for searching algorithm, FS is adopted to guarantee the
highest compressing performance. The regular searching pat-
tern is suitable for parallel processing. Besides, FS can effec-
tively support VBS by reusing each 4×4-block SADs for larger
blocks. Pixel truncation [23] of five-bit precision and subsam-
pling [24] of half pixel rate are applied to reduce the hardware
cost. Moreover, adaptive search range adjustment [25] is also
applied to save computations.

B.2 Architectures Design of IME

In IME, in order to find the best matched candidate, a Search
Window (SW) within one reference frame has to be searched.
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Fig. 4. Modified MVPs. In order to facilitate the parallel processing and MB
pipelining, the MVPs of all 41 blocks are changed to the medium of MV0,
MV1, and MV2.
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Figure 5 shows the low bandwidth parallel IME architecture,
which mainly comprises eight PE-Array 2-D SAD Tree. The
Current MB (CMB) is stored in Cur. MB Reg. The reference
pixels are read from external memory and stored in Luma Ref.
Pels SRAMs. Each PE array and its corresponding 2-D SAD
tree compute the 41 SADs of VBS for one searching candidate
each cycle. Therefore, eight horizontally adjacent candidates are
processed in parallel.

Because SWs of neighboring current MBs are consider-
ably overlapped, and so are the pixels of neighboring candi-
date blocks, a three-level memory hierarchy, including exter-
nal memory, Luma Ref. Pels SRAMs, and Ref. Pels Reg.
Array, is used to reduce bandwidth requirement by data reuse
(DR). Three kinds of DR are implemented—MB-level DR,
inter-candidate DR, and intra-candidate DR. The Luma Ref.
Pels SRAMs are firstly embedded to achieve MB-level DR.
when ME process is changed from one CMB to another CMB,
there are overlapped area between neighboring SWs. Therefore,
only a part of SW must be loaded from system memory, and the
system bandwidth can be reduced [26].

The Ref. Pels Reg. Array acts as the cache between PE-
Array 2-D SAD Tree and Luma Ref. Pels SRAMs. It is de-
signed to achieve inter-candidate DR. A horizontal row of ref-
erence pixels, which is read from SRAMs, is stored and shifted
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downward in Ref. Pels Reg. Array. When one candidate is pro-
cessed, 256 reference pixels are required. When eight horizon-
tally adjacent candidates are processed in parallel, not (256×8)
but (256+16×7) reference pixels are required. Besides, when
the ME process is changed to the next eight candidates, most
data can be reused in Ref. Pels Array. The parallel architec-
ture achieves inter-candidate DR in both horizontal and vertical
directions and reduce the on-chip SRAM bandwidth.

Fig. 6 shows the architecture of PE-array 2-D SAD Tree. The
costs of sixteen 4×4-blocks are separately summed up by six-
teen 2-D Sub-trees, and then reused by one VBS Tree for larger
blocks. This is so-called intra-candidate DR. All 41 SADs for
one candidate are simultaneously generated and compared with
the 41 best costs. No intermediate data are buffered. There-
fore, this architecture can support VBS without any partial SAD
registers.

C. Reconfigurable Intra Predictor Generator

The intra prediction supports the most various prediction
modes, which includes four I16MB modes, night I4MB modes,
and four Chorma modes. For the RISC-based solution, the re-
quired operation frequency will become too high. For the ded-
icated hardware, 17 kinds of PEs for the 17 modes make the
hardware cost high. Therefore, the reconfigurable circuit and
resource sharing for all intra prediction modes are the efficient
solutions.

The hardware architecture of the four-parallel reconfigurable
intra predictor generator is shown in Fig. 7. Capital letters
(A, B, C, ...) are the neighboring 4×4-block pixels. UL, L0-
L15, and U0-U15 denote the bottom right pixel from the up-
per left MB, the 16 pixels of the right most column from the
left MB, and the 16 pixels of the bottom row from the upper
MB, respectively. Four different configurations are designed
to support all intra prediction modes in H.264/AVC. Firstly,
the I4MB/I16MB horizontal/vertical modes use the bypass data
path to select the predictors extended from the block boundaries.
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Fig. 7. Four-parallel reconfigurable intra predictor generator. Four differ-
ent configurations are designed to support all intra prediction modes in
H.264/AVC.

Secondly, multiple PEs are cascaded to sum up the DC value for
I4MB/I16MB/chroma DC mode. Thirdly, the normal configu-
ration is used for I4MB directional modes 3–8. The four PEs
select the corresponding pixels multiple times according to the
weighted factors, and process independently. Finally, the recur-
sive configuration is designed for I16MB plan prediction. The
predictors are generated by adding the gradient values to the re-
sult of previous cycles.

IV. H.264/AVC DECODING SYSTEM

In this section, a methodology to determine a suitable pipelin-
ing structure of a H.264/AVC decoder is presented. The target
resolution is HDTV1024P 30fps videos. The design goals of
this work are low area cost and low system bandwidth. In the
following sections, the scheduling as well as the key modules of
the decoding system will be elaborated.

A. Hybrid Task Pipelining

The overall system architecture is shown in Fig. 8 [27]. The
sequence parameter set, picture parameter set, and slice head-
ers are parsed by system processor. The MB-level information
including MB headers and transformed/quantized residues are
decoded by the Parser Engine. The predicted pixels are gener-
ated by the Inter Pred. Engine or Intra Pred. Engine according to
the MB mode. The residues are recovered by the IQ/IT Engine.
The MB is reconstructed by Sum and Clipping Engine. Finally,
Deblocking Engine filters MB pixels and outputs them to the ex-
ternal memory. The buffers between the processing engines are
required to separate pipelining stages.

Previous designs of video decoders are usually based on
MB pipelining scheme [28]. Our system architecture is based
on a hybrid task pipelining scheme including 4×4-block-level
pipelining, MB-level pipelining, and frame-level pipelining.
The reasons are stated as following. In H.264/AVC, 4×4-block
is the smallest element of the prediction block mode. The
transforms and entropy coding are also based on 4×4-blocks.
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Therefore, a 4×4-block pipelining scheme can be designed for
CAVLD, inverse quantization/inverse transformation, and in-
tra prediction with the benefit of less coding latency. It re-
quires about 1/24 of buffer size compared to the traditional MB
pipelining architecture.

Inter prediction produces the predicted MB pixels from pre-
viously decoded reference frames. As with intra prediction, the
basic processing element of inter prediction is also a 4×4-block.
Due to the six-tap FIR filter for interpolation, 9×9 integer refer-
ence pixels are required for a current 4×4-block. If the blocks
of prediction mode are larger than 4×4, overlapped reference
frame pixels of these 4×4-blocks can be reused to reduce the
system bandwidth. The inherent order of 4×4-blocks in the bit-
stream is the double-z-scan order. Reference frame DR will be
less efficient if Inter Pred. Engine adopts the 4×4-block pipelin-
ing scheme and follows the double-z-scan order. Therefore, In-
ter Pred. Engine should be scheduled to MB-level pipelining
with a customized scan order to exploit the reference frame DR.
All reference pixels necessary to predict a MB are read from
memory at once to reduce memory bandwidth.

Deblocking Engine is another special case that does not suit to
the double-z scan order. Deblocking Engine filters the edges of
each 4×4 block vertically then horizontally. Besides, one 4×4-
block cannot be completely filtered until its neighboring blocks
are reconstructed. This data dependency makes it impractical to
fit the deblocking operation into a 4×4-block pipelining, since
the buffer cannot be efficiently reduced and serious control over-
head is required. If the decoder has to support FMO and ASO,
where the MBs of a frame may not be coded in raster-scan or-
der, the DB unit has to be scheduled to frame level pipelining
because the filtering order of one frame can not either be vio-
lated in MB boundaries. Otherwise, the MB pipelining schedule
is adopted.

B. Low-bandwidth Motion Compensation Engine

According to the analysis in decoder system, MC should be
scheduled to MB-level pipelining with a customized scan order
to exploit the reference frame DR. The 4×4-based MC is firstly
adopted. All VBS are decomposed into several 4×4 element
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Fig. 9. (a) General case interpolation window; (b) Four interpolation windows
for an 8×8 block (shaded region means reusable); (c) Interpolation window
when MV pointing to horizontal integer pixels.

blocks, and processed by the MC engine with full hardware uti-
lization. The straightforward memory access scheme processes
every decomposed 4×4 element blocks independently, and al-
ways loads 9×9 pixels for interpolation as shown in Fig. 9(a).
The bandwidth requirement of 4×4-based MC can be reduced
by two bandwidth reduction techniques [29].

The first technique is Interpolation Window Reuse (IWR).
As shown in Fig. 9(b), there are overlapped regions between
interpolation windows for neighboring 4×4 element blocks
when the block mode is larger than 4×4. The shaded regions
can be reused. The second scheme is Interpolation Window
Classification (IWC). The interpolation window is not always
(X+5)×(Y+5) for a X×Y block. As shown in Fig. 9(c), a 4×4
block with integer MV in horizontal direction does not require
horizontal filtering. A 4×9 interpolation window is read. In
brief, the IWR and IWC scheme aim to precisely control the
MC hardware to load a smaller and exact interpolation window.
These techniques can provide about 60–80% bandwidth reduc-
tion for the 4×4-based MC.

Figure 10 shows the MC architecture. The efficient vertical
scheduling in [15] is applied with Down Shift Register Array
to support vertical IWR. Besides, an Horizontal Reuse Memory
is designed for horizontal IWR. The IWC is implemented by
Control FSM and Address Generator. The Shift & Combine
circuit packs the required integer pixels inputted from external
frame memory and Horizontal Reuse Memory. The 2-D IP Unit
performs the interpolation, and the compensated MB is buffered
in the MC memory.
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TABLE I

HARDWARE RESOURCE OF H.264/AVC ENCODER

Functional Block Gate Counts Memory (KB)
IME Module 305211 13.71
FME Module 401885 13.82
IP Module 121012 5.01
EC Module 29332 1.27
DB Module 20152 0.91
Others 45176 0.00
Total 922768 34.72

V. IMPLEMENTATION RESULTS

A. Implementation results of H.264/AVC SDTV/HDTV720P En-
coder

The specification of this H.264/AVC encoder is baseline pro-
file with level up to 3.1. The maximum computational capa-
bility is to real-time encode SDTV 30fps video with four ref-
erence frames or HDTV720P 30fps video with one reference
frame. Table I shows the logic gate count profile synthesized
at 120 MHz. The total logic gate count is about 922.8K. The
prediction engine, including IME, FME, and IP stages, domi-
nates 90% of logic area. As for on-chip SRAM requirement,
34.88 KB are required. The chip is fabricated with UMC 0.18
µm 1P6M CMOS process. Figure 11 shows the die micrograph.
The core size is 7.68×4.13 mm2. The power consumption is 581
mW for D1 videos and 785 mW for HDTV720p videos at 1.8
V supply voltage with 81/108 MHz operating frequency. The

TABLE II

SPECIFICATION OF THE DEVELOPED H.264/AVC BASELINE PROFILE

ENCODER CHIP

Technology UMC 0.18 µm 1P6M CMOS
Pad/Core Voltage 3.3/1.8 V
Core Area 7.68×4.13 mm2

Logic Gates 922.8 K (2-input NAND gate)
SRAM 34.72 KB
Operating Frequency 81/108 for D1/HDTV720P
Power Consumption 581/785 mW for D1/HDTV720P
Encoding Features All Baseline Profile Compression Tools
Max. # of Ref. Frames 4/1 for D1/HDTV720P
Max. SR (Ref. 0) H[-64,+63] V[-32,+31]
Max. SR (Ref. 1-3) H[-32,+31] V[-16,+15]

TABLE III

GATE COUNT PROFILE OF THE H.264/AVC DECODER

Functional Block Gate Counts Memory (KB)
Main Control 22695 0.48
Parser Engine 21121 1.02
Inter Pred. Engine 69695 2.43
Intra Pred. Engine 28707 4.93
IQ/IT Engine 19792 0.00
Deblocking Engine 35437 1.12
Others 19980 0.00
Total 217428 9.98

TABLE IV

CHIP FEATURES OF H.264/AVC DECODER

Technology TSMC 0.18 µm 1P6M CMOS
Pad/Core Voltage 3.3/1.8 V
Core Area 2.19×2.19 mm2

Logic Gates 21.743 K (2-input NAND gate)
SRAM 9.98 KByte
Profile Baseline
Operating Frequency 120/1.5 MHz for HDTV1024P 30fps/QCIF 15fps
Power Consumption 186.4/1.18 mW for HDTV1024P 30fps/QCIF 15fps

detailed chip features are shown in Table II.

B. Implementation results of H.264/AVC HDTV1024P Decoder

The specification of this H.264/AVC decoder is baseline pro-
file with level 4.1. It can real-time decode HDTV1024P 30fps
video with operational frequency of 120 MHz. Table III shows
the hardware resource requirement. The total logic gate count
is 217K, and the on-chip SRAM requirement is 10 KB. The
chip is fabricated with TSMC 0.18µm 1P6M CMOS technol-
ogy. The core size is 2.19×2.19 mm2. The power consumption
is 186.4 mW at 1.8V and 120MHz for decoding HDTV1024P
30fps videos, and is 1.18 mW at 1.8V and 1.5MHx for decoding
QCIF (176×144) 15fps videos. The detailed chip features are
shown in Table IV.

VI. CONCLUSION

In this paper, state-of-the-art hardware architectures for
H.264/AVC video coding core have been presented. First, five
major functional blocks are mapped into four-stage MB pipelin-
ing structure to highly increase the processing capability and
hardware utilization. Besides, a hybrid task pipelining scheme,
a balanced schedule with block-level, MB-level, and frame-level
pipelining, is used for decoder to greatly reduce the internal
memory size. Combined with many bandwidth reduction tech-
niques and DR schemes, these two system architectures are all
characterized by high throughput and low system bandwidth re-
quirement. Moreover, efficient modules are designed to sup-
port the new H.264/AVC functionalities. A parallel IME archi-
tecture comprising eight PE arrays and adder trees is applied
to dramatically reduce the memory bandwidth by three-level
memory hierarchy and DR scheme. A reconfigurable intra pre-
dictor generator was designed to achieve resource sharing for
all intra prediction modes. A bandwidth optimized MC engine
highly exploits DR between interpolation windows of neighbor-
ing blocks. The hardwired coding system can efficiently support
HDTV videos with real-time constraint, which is proved by the
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prototype chips.
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