
Customizing Wide-SIMD Architectures for H.264
S. Seo, M. Woh, S. Mahlke, T. Mudge

Department of Electrical and Computer Engineering
University of Michigan, Ann Arbor, MI 48109
Email: swseo,mwoh,mahlke,tnm@umich.edu

S. Vijay, C. Chakrabarti
Department of Electrical Engineering

Arizona State University, Tempe, AZ 85287
Email: vijays,chaitali@asu.edu

Abstract—In recent years, the mobile phone industry has be-
come one of the most dynamic technology sectors. The increasing
demands of multimedia services on the cellular networks have
accelerated this trend. This paper presents a low power SIMD
architecture that has been tailored for efficient implementation
of H.264 encoder/decoder kernel algorithms. Several customized
features have been added to improve the processing performance
and lower the power consumption. These include support for
different SIMD widths to increase the SIMD utilization efficiency,
diagonal memory organization to support both column and row
access, temporary buffer and bypass support to reduce the reg-
ister file power consumption, fused operation support to increase
the processing performance, and a fast programmable crossbar
to support complex data permutation patterns. The proposed
architecture increases the throughput of H.264 encoder/decoder
kernel algorithms by a factor of 2.13 while achieving 29% of
energy-delay improvement on average compared to our previous
SIMD architecture, SODA.

I. INTRODUCTION

In the past decade, mobile devices have rapidly proliferated.
Today’s devices not only support advanced signal processing
of wireless communication data, but also multimedia services
such as video encoding/decoding, interactive video conferenc-
ing and image manipulation. All of this requires a powerful
processor which has to be very power-efficient.

H.264 is a state-of-the art video compression standard of
ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). This standard pro-
vides higher quality video with lower bit rates than earlier
standards and has been adopted in many of current and next
generation video applications. For instance, both the Bluray
Disc and HD-DVD format ratified H.264 as one of three
mandatory video compression codecs for High Definition
DVD, and the Digital Video Broadcast (DVB) also selected
the use of H.264 for broadcast television.

Most mobile processors today combine general-purpose
processors, digital signal processors and hardwired ASICs
to satisfy the high-performance and low-power requirements.
However, such a heterogeneous platform is inefficient in terms
of area, power and programmability. Earlier, we have devel-
oped SODA (Signal Processing On-Demand Architecture) [1],
wide-SIMD low-power programmable platform for wireless
communications. In this paper, we present a programmable
architecture that has been optimized for H.264. This is also a
wide-SIMD architecture like SODA with features that exploit
the characteristics of the H.264 kernel algorithms. The cus-
tomizing features include support of multiple SIMD widths to

increase the SIMD utilization efficiency, diagonal memory or-
ganization to avoid memory access conflict, bypass and buffer
support to reduce the register file (RF) power consumption,
fused operation support to speed up the processing, and a
fast programmable crossbar to support complex data shuffle
operations. The proposed architecture is similar to AnySP [19],
but customized more for video codecs. The customized ar-
chitecture is implemented in the RTL Verilog model and
synthesized in TSMC 90nm using Synopsys physical compiler.
The results show that the customizing features increase the
processing throughput by a factor of 2.13 while achieving 29%
of energy-delay improvement over SODA.

The rest of the paper is organized as follows. Section II
gives a brief overview of H.264 encoder/decoder. Section III
introduces SODA, the SIMD-based high-performance DSP
processor for wireless communications. Section IV introduces
the new architectural features incurred by H.264 algorithms
and Section V describes the modified processing element (PE)
architecture. Section VI shows how H.264 kernel algorithms
are mapped on the modified SIMD architecture. Section VII
presents the throughput and power analysis of the augmented
architecture. Section VIII introduces the related work and
Section IX concludes the paper.

II. H.264 CODEC

Video compression is being actively considered for mobile
communication systems because of the increasing demand of
multimedia services on mobile devices. In this paper, we focus
on H.264 because it is representative of contemporary video
coding standards and achieves better performance than earlier
standards such as MPEG-1, MPEG-2, MPEG-4, and H.263.

Fig. 1 shows the block diagram of H.264 encoder and
decoder. The encoder includes two dataflow paths: a forward
path (left to right) and a reconstruction path (right to left) [2].
The dataflow of the decoder contains the reconstruction path
(shown in shaded blocks).

The H.264 encoder processes an input frame or field Fn
in macroblock units. Each macroblock is encoded using inter-
prediction or intra-prediction. In the inter-prediction mode, the
predicted P macroblock is formed by motion-compensated
prediction from previously encoded frames, and in the intra-
prediction mode, P is predicted by the current frame. The
P macroblock is subtracted from the current macroblock to
produce a residual block Dn that is transformed, quantized,



Fig. 1. H.264 encoder/decoder reference design. ME: Motion Estimation,
MC: Motion Compensation, T: Transformation, Q: Quantization, NAL: Net-
work Abstract Layer. Grey area represents functional blocks of the H.264
decoder, which is the subset of the H.264 encoder [2].

reordered, and entropy encoded. The entropy-encoded coeffi-
cients with header information that includes prediction modes,
quantizer parameter, motion vector information, etc. form the
network abstract layer (NAL) bitstream.

The H.264 decoder receives the compressed bitstream from
the NAL. The entropy decoder decodes the bitstream, and
after reordering it, the quantized coefficients are scaled and
inverse transformed to generate residual block data Dn. Using
the header information in NAL, the decoder selects prediction
values using either motion compensation or intra-prediction.
The predicted block is added to the residual block to generate
unfiltered block data uFn which is filtered by a deblocking
filter and stored as reconstructed frame or field.

The computational requirements of H.264 video codec de-
pends on video resolution, frame rate, and compression level.
For mobile phone applications, the videos are encoded in the
QCIF format (176 x 144) at 15 frames per second (fps). On
the other hand, Bluray videos are encoded in 1080p (1920 x
1080) at 60 fps interlaced. The H.264 standard also defines
several profiles, which use different compression algorithms.
In this paper, we focus on the baseline profile. We study
the following algorithms: intra-prediction, deblocking filter,
motion compensation - interpolation, and motion estimation
because these algorithms contribute the most to the processing
time and power consumption.

III. WIDE SIMD ARCHITECTURE, SODA

In this section, we present a representative SIMD archi-
tecture, SODA [1]. The architecture was initially designed
to support wireless protocols such as WCDMA and IEEE
802.11a. Since both communication and multimedia process-
ing are supported by today’s handsets, SODA is selected as
the base architecture in this study.

The SODA multiprocessor architecture is shown in Fig. 2.
This system consists of multiple data processing elements
(PEs), one control processor, and global scratchpad memory,
all connected through a shared bus. Each SODA PE consists
of 5 major components: 1) a 32-way, 16-bit datapath SIMD
pipeline for supporting vector operations. Each datapath in-
cludes a 2 read-port, 1 write-port 16 entry register file, and a
16-bit ALU with multiplier. Intra-processor data movements
are supported through the SIMD Shuffle Network (SSN); 2) a

512-bit
SIMD
Reg.
File

E
X

512-bit
SIMD
ALU+
Mult

SIMD
Shuffle

Net-
work
(SSN)

W
B

Scalar
ALU

W
B

E
X

Scalar
RF

Local
SIMD

Memory

Local
Scalar

Memory

S
T
V

AGU
RF

E
X

W
B

AGU
ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V
T
S

Pred.
Regs

W
B

SIMD
to

Scalar
(VtoS)ALU

RF

DMA

SODA
PE

5. DMA

3. Local
memory

Local
Memories

Execution
Unit

In
te

rc
on

n
ec

t 
B

u
s

Global
Scratchpad

Memory

Control
Processor

SODA System

To
System

Bus

PE

Local
Memories

Execution
Unit

PE

Local
Memories

Execution
Unit

PE

Fig. 2. Wide-SIMD architecture: SODA [1]

16-bit datapath scalar pipeline for sequential operations. The
scalar pipeline executes in lock-step with SIMD pipeline with
SIMD-to-scalar and scalar-to-SIMD operations to exchange
data between two pipelines; 3) two local scratchpad mem-
ories for the SIMD pipeline and the scalar pipeline; 4) an
AGU (Address-Generation-Unit) pipeline for providing the
addresses for local memory accesses; and 5) a programmable
DMA (Direct-Memory-Access) unit to transfer data between
scratchpad memories and interface with the outside system
(inter-processor data transfer). The SIMD pipeline, scalar
pipeline and the AGU pipeline execute in VLIW-styled lock-
step manner, controlled with one program counter (PC).

IV. H.264 ALGORITHM ANALYSIS AND DESIGN
DECISIONS

In this section, we analyze key algorithms in H.264 and
propose several architectural design decisions to improve the
processing performance and power efficiency. This analysis
led to the introduction of the following customizing features:
1) multiple SIMD widths 2) diagonal memory organization,
3) bypass and temporary buffer support (partitioned RF), 4)
fused operation, and 5) programmable crossbar.

A. Multiple SIMD Widths

Algorithm Kernel SIMD SIMD TLP
Operation Workload Width Level

Intra-pred (dec.) 13-tap filter 75.48 % 16 Med.
Intra-pred (enc.) 13-tap filter 91.06 % 16 High
Deblocking Filter 3,4,5-tap filter 86.61 % 8 Med.
Interpolation (MC) 2,4,6-tap filter 81.59 % 8 High
Motion Estimation SAD (16) 62.46 % 16 High

TABLE I
KERNEL OPERATIONS, SIMD WORKLOAD, REQUIRED SIMD WIDTH, AND

THE AMOUNT OF THREAD LEVEL PARALLELISM (TLP) FOR H.264
ENCODER/DECODER ALGORITHMS

Table I shows the workload profiling for the key H.264
kernel algorithms. The other important computational kernels
such as transform, quantization, and entropy coding are not
included in this study because the transform/quantization
kernel is easily parallelizable and is not the performance



bottleneck, and the entropy coding is completely sequential
and can be mapped only to a scalar processing unit. The
available data level parallelism (DLP) expressed in terms of
SIMD workload, natural SIMD width, and the thread level
parallelism (TLP) for the key parallel H.264 algorithms are
presented in Table I. The SIMD workload consists of the
arithmetic and logical computations that can be mapped to the
SIMD pipeline. The scalar workload represents the instructions
that are not parallelizable such as loop control and address
generation, which run on the scalar pipeline and the AGU
pipeline respectively. The overhead workload includes all the
instructions that support SIMD computations such as SIMD
memory operations and memory alignment operations.

As can be seen in Table I, most of the H.264 kernel
algorithms can exploit the SIMD datapath, but the required
SIMD width varies. While the deblocking filter and inter-
polation have SIMD width of 8, intra-prediction and motion
estimation have a SIMD width of 16. Kernels such as intra-
prediction mode decision and motion estimation have high
TLP, which means that independent threads corresponding to
different macroblocks can be mapped onto the SIMD datapath.
For these kernels, the wide-SIMD pipeline helps to increase
the processing performance. Kernels such as intra-prediction
and deblocking filter are not easily parallelizable, and a wide
SIMD width does not guarantee higher performance. There-
fore, even though it is easier to design SIMD architectures with
a fixed SIMD width, we propose to support multiple SIMD
widths to maximize the SIMD utilization.

B. Diagonal Memory Organization

Fig. 3. Diagonal memory organization and shuffle network, which allows
the horizontal and vertical memory access without conflict. The 64x64 shuffle
network realigns 64 16-bit data.

Multimedia algorithms use two or three dimensional data
unlike wireless signal processing algorithms that typically
operate on single dimensional data. For example, the deblock-
ing filter algorithm operates on horizontal edges followed by
vertical edges. Row or column order memory access works
well for one set of edges, but not for the other. A diagonal
memory organization is more suitable here since blocks of
pixels along a row or column can be accessed with equal ease.

Fig. 3 shows how a 16x16 macroblock is stored in the pro-
posed diagonal memory organization. The 16x16 macroblock
is broken into 4x4 sub blocks (a, b, ... p) each containing 16
pixels. Groups of sub blocks (a, h, k, n), (b, e, i, o), (c, f, i, p),

and (d, g, j,m) are stored in separate memory banks. This
allows neighboring blocks which share horizontal and vertical
edges to be accessed at the same time.

C. Bypass and Temporary Buffer Support

Fig. 4. Subgraphs for the inner loops for two H.264 kernels; The bypass
path is not shown for simplicity.

Fig. 4 shows the subgraphs for inner loops of two H.264
kernel algorithms. We see that there exists large amount of
data locality. Moreover, intermediate data do not need to
be stored in the register file (RF) because the values are
usually consumed by the very next instruction and all not
used anymore. Thus, it is sufficient to store these values in
a temporary buffer or bypass them. These features have been
inspired by recent works in [3] and [4], which show that
storing short-lived data and bypassing RF reduce the power
consumption and increase the performance.

D. Fused Operation

Algorithm Shuffle-ALU Add-Shift Sub-Abs Neg-Add
Intra-Pred.(Enc) 21.43 % 7.14 % 28.57 % -
Intra-Pred.(Dec) 30.77 % 30.77 % - -

Deblocking Filter 49.48 % 16.49 % - -
Interpolation(MC) 30.09 % 3.76 % - 15.05 %
Motion Estimation 24.04 % - 48.08 % -

TABLE II
INSTRUCTION PAIR FREQUENCY FOR H.264 KERNEL ALGORITHMS

Many operations in DSP algorithms occur in pairs or tuples.
The most common example is the multiply followed by
accumulate, which has been exploited by many architectures.
Table II shows the breakdown of the most frequent instruction
pairs of H.264 kernel algorithms. Among all pairs, the shuffle-
ALU pair is heavily used because most of the time, data must
be aligned before being processed by the SIMD datapath.
The frequencies of add-shift and sub-abs pairs are also very
high. The sub-abs instruction pair is used in the SAD (Sum
of Absolute Differences) operations in motion estimation. The
add-shift instruction pair represents the round operation, which
is one of the most used operations in H.264 algorithms.

Based on this analysis, we propose to fuse the frequently
used instruction pairs. This would increase performance and
lower power consumption because unnecessary RF access can
be significantly reduced.



E. Programmable Crossbar

Fig. 5. Permutation Patterns for H.264 Intra-prediction Modes

Fig. 5 shows some examples of the SIMD permutation pat-
terns that are found in H.264 intra-prediction algorithm. Even
though the permutation patterns look very random, each H.264
algorithm - intra-prediction, deblocking filter, interpolation,
and motion estimation - has a predefined set of shuffle patterns,
and the number of distinct sets is typically less than 16.

Most commercial DSP processors and GPP multimedia
extensions support some types of data permutations. These
features are even more important in SIMD architectures for
aligning data before the SIMD computation units. For instance,
the perfect shuffle network in SODA [1] supports a few
sets of permutations in one clock cycle. But, if complex
permutation patterns are required, multiple instructions need
to be executed. These additional clock cycles degrade the
timing and power performance. To support complex data
access patterns in H.264 algorithms, we propose small low-
power programmable fixed pattern crossbars. We place one of
these between memory and register file to align data before
loading and storing, and another between the register file and
SIMD functional units to shuffle data before processing.

V. PROPOSED ARCHITECTURE

In this section, we describe the customized wide-SIMD
architecture which includes the features proposed in Sec-
tion IV. Features such as configurable SIMD datapath, tempo-
rary buffer, bypass network and SRAM-based crossbar have
also been incorporated in our recent architecture, AnySP [19].
The design of the functional unit and the multibank memory
structure is, however, special to the proposed architecture.

A. PE Architecture

Fig. 6 shows the proposed PE architecture. It is similar
to SODA in that it consists of a SIMD pipeline, a scalar
pipeline, and an AGU pipeline. The SIMD datapath consists of
four groups of 16-wide SIMD units that can be functioned as
eight groups of 8-wide, two groups of 32-wide or one 64-wide
SIMD datapath. Each 16-wide 16-bit SIMD datapath consists
of 16-wide 16-entry RF, 16 functional units (FUs) supporting
fused instructions, partitioned 16-wide 4-entry RF (temporary
buffer) and an adder tree that supports the summation of 2,4,8,
and 16 elements. The 16-wide SIMD partitions are glued by
multi-SIMD partition shuffle network and data within each
16-wide SIMD units can be shuffled using predefined shuffle

Fig. 6. PE architecture consists of multi-bank local SIMD memory, SIMD
RFs, multi-SIMD datapath, scalar pipeline, four AGU pipelines dedicated to
four 16-wide SIMD partitions, and DMA (not shown here)

patterns by a programmable crossbar. Also, multi-SIMD par-
tition adder tree supports the function of the summation of 32
and 64 elements.

The local memory consists of four memory banks; each
bank is 16-wide 16-bit 256-entries (8KB). The four AGU
pipelines work for four local memory banks. The scalar and
AGU pipeline share the same SIMD local memory using a
scalar memory buffer which can be accessed sequentially.
AGU pipeline also functions as scalar pipeline for each SIMD
datapath. Details of these architectural features are described
in the rest of this section.

B. SIMD Partitioning

As described in Section IV-A, H.264 kernel algorithms have
different natural vector widths. When the processor’s SIMD
width is smaller than the natural vector width, the performance
drops because the natural vector has to be split into many small
vectors and handling these vectors requires additional work.
On the other hand, if the processor’s SIMD width is larger
than the natural vector width, some of the SIMD lanes are idle,
thereby wasting power. Therefore, multiple SIMD partitioning
is chosen to support both small SIMD-width algorithms having
a large amount of TLP and large SIMD-width algorithms
having little TLP.

As can be seen in Fig. 6, a 64-wide SIMD datapath is broken
into four groups of 16-wide SIMD datapath units. This can be
further broken into eight groups of 8-wide SIMD units. Each
16-wide SIMD datapath can be combined to exploit more data
parallelism such as 32-wide and 64-wide with the support of
the multi-lane shuffle network.

C. SIMD Functional Units

Fig. 7 shows the 16-wide SIMD functional unit, which
consists of a 32x32 shuffle network, a functional unit (mul-
tiplier, ALU, simple adder/subtractor) and a 16-wide adder
tree. The shuffle network supports any permutation pattern
using two 16-wide vectors. This shuffle network also stores



Fig. 7. 16-wide SIMD Functional Unit

a small number of shuffle patterns in the module to support
fast permutation between 16 functional units. The functional
units support instruction pairs such as multiplier-add and add-
shift described in Section IV-D. A 16-wide adder supports the
sum of 2, 4, 8, and 16 elements. The other characteristic of
the functional unit is support of saturation arithmetic. For 2’s
complement signed 8-bit data, the results of the arithmetic
units are saturated to +127 and -128, and for unsigned data,
to 255 and 0. This saturation feature is very important for
operations in the deblocking filter kernel.

D. Temporary Buffer and Bypass Support
To alleviate the problem of high power consumption of

register files (RFs), two techniques are applied: temporary
buffer (partitioned RF) and data bypass network support.
Each SIMD lane has a 4-entry temporary buffer that stores
intermediate data (short-lived values) to decrease the amount
of main RF accesses. This small RF consumes less power
than the main RF and also helps to reduce register pressure of
the main RF. Typical writeback stage is modified to support
data forwarding bypass by explicitly directed instructions.
Instructions dictate functional units where to fetch data (from
main RFs, from temporary buffers or from bypassed data).

E. Multi SIMD Partition Shuffle Network
Due to data access complexity in H.264 algorithms and

proposed memory system, data needs to be shuffled within a
SIMD partition or between SIMD partitions. The multi-SIMD
partition shuffle network is placed next to four groups of 16-
wide SIMD functional units to support data transfer between
SIMD partitions. This large shuffle network also allows the
processor to function as four SIMD pipelines connected in se-
rial. This feature is useful when a signal processing algorithm
have little TLP.

F. Multiple Output Adder Tree Support
In some H.264 algorithms, the operation of wide vector

inner sum (s = v[0]+ v[1]+ ...+ v[N − 1]) occurs frequently.
Examples of this operation are matrix multiplication operation
of DCT and SAD calculation for motion estimation. Though
H.264 algorithms usually require the sum of 2, 4, 8, and 16
pixel values, the 64-wide multiple SIMD partition adder tree
supports other output possibilities such as 32 and 64. The
multiple outputs are stored back into temporary buffers and
written back to the main RFs if necessary.

VI. MAPPING OF H.264 KERNELS

In this section, we describe how the main H.264 kernels are
mapped onto the proposed architecture.

A. Intra Prediction

Fig. 8. Mapping a 16x16 luma macroblock intra-prediction process on the
proposed architecture. Example of the Diagonal Down Right intra-prediction
for a 4x4 sub block (grey block) is presented with fused operations.

In H.264 intra-prediction, there are nine prediction modes
- Vertical, Horizontal, DC, Diagonal Down Left, Diagonal
Down Right, Vertical Right, Horizontal Down, Vertical Left,
and Horizontal Up. A 16x16 luma macroblock is broken into
sixteen 4x4 sub blocks. The 16 prediction values (a, b, ..., p)
for each 4x4 sub block is calculated with neighboring pix-
els (A, B,C, D, I, J,K, L, X) using 16 SIMD lanes. At the
encoder, all the prediction modes are calculated and the
best predicted one is chosen. At the decoder, the sub block
is generated based on the prediction mode in the header
information sent by the encoder.

Prediction Mode Shuffle Pattern
Diagonal Down Left 7,8,9,10,8,9,10,11,9,10,11,12,10,11,12,13
Diagonal Down Right 5,6,7,8,4,5,6,7,3,4,5,6,2,3,4,5
Vertical Right 18,19,20,21,5,6,7,8,4,18,19,20,3,5,6,7
Vertical Left 19,20,21,22,7,8,9,10,20,21,22,23,8,9,10,11
Horizontal Down 17,5,6,7,16,4,17,5,15,3,16,4,14,2,15,3
Horizontal Up 16,3,15,2,15,2,14,1,14,1,0,0,0,0,0,0

TABLE III
SHUFFLE PATTERNS FOR SIX INTRA PREDICTION MODES FOR 4X4 LUMA

There is significant overlap in the computations of six
of the modes. The other three modes, namely, Horizontal,
Vertical, and DC mode, are computed using only a crossbar
and an adder tree. Fig. 8 shows how to compute the partial
intermediate values that are reused for the six prediction
modes. 16 SIMD lanes are used to generate two sets of partial
sums for a 4x4 sub block with fused operations such as
shuffle-add and add-shift. After generating R0 to R23, these
intermediate values are distributed to the 16 SIMD lanes by
a shuffle network. Table III shows how to shuffle the partial
sums for each prediction mode. The use of partial sums results
in significant reduction in the number of instruction cycles in
the encoder. The intra-prediction calculations in the encoder
are very parallel and four groups of 16-wide SIMD datapath



can be utilized in parallel. However, in the decoder, there are
dependencies in the processing order. For example, in Fig. 9,
the A6 macroblock requires A1, A2, A3, and A5 macroblocks
to be predicted first. Fig. 9 shows a processing order in which
four macroblocks are processed at the same time, thereby
utilizing all SIMD lanes.

Fig. 9. Mapping macroblocks into SIMD partitions such that all SIMD lanes
are utilized

B. Deblocking Filter

Fig. 10. Mapping a deblocking filter process when BS (Block Strength)=4.

H.264 deblocking filter smoothes the block edges to reduce
blocking distortion without affecting the real edges. Based on
block strength, the function of this filter varies dynamically
(three-tap, four-tap, or five-tap filter). Furthermore, there is
an order in which the edges have to be filtered. Fig. 10
shows how deblocking filter process is mapped on the SIMD
pipeline. To utilize all SIMD lanes, edges A-B, E-F, I-J, M-N
are filtered in parallel. To avoid memory access conflict, sub
blocks A,B,I,J (which belong to four different sub banks) are
loaded first, followed by E,F,M,N, etc. The four groups of 16
pixel values are permuted by a shuffle network in the memory
system to generates eight groups of horizontally aligned eight
pixel values. Each SIMD partition exploits fused shuffle-add

operations followed by round operations to produce filtered
pixel values.

C. Motion Compensation

Fig. 11. Example of interpolation of motion compensation (half-pel).

In H.264, the size of the motion compensation block can
be 16x16, 16x8, 8x16, 8x8, 4x8, and 4x4, and the resolution
can be integer-pixel, half-pixel, quarter-pixel, or eighth-pixel.
Because sub-sample positions do not exist in the reference
frames, the fractional pixel data are created by interpolation.
Half-pixel interpolations are derived by a six tap filter as
shown in Eq.1 in Fig. 11. The equation is modified to reduce
multiplications and to express the six tap filter in terms of
partial sums and differences of the original pixel values.
This helps in exploiting the re-usability of computations for
subsequent half pixel interpolations (Eq.2) in Fig. 11. As can
be seen in Fig. 11, the first row of a 16x16 block is loaded to
SIMD RFs by using a shuffle network, and the partial sums
and differences are stored in temporary registers. A subset of
these values are shuffled and summed with an adder tree to
obtain the half-pixel estimate. Eight groups of 8-wide SIMD
datapath handle the interpolation process for each row. Once
the half pixel estimates have been calculated for a particular
row, we can use them to compute the quarter pixel values.

D. Motion Estimation

Motion estimation of an MxN block involves finding an
MxN sample region in a reference frame that closely matches
the current block. An area in the reference frame of size
2Mx2N centered on the current block position is searched,
and the minimum SAD value is needed to determine the
best match. Fig. 12 shows the mapping method for a 4x4
block (current frame) in an 8x8 search area in the reference
frame. The pixels of the current 4x4 block (a, b, c, ..., p)



Fig. 12. Mapping a motion estimation process for a 4x4 block on the
proposed architecture; The search area is 8x8.

are loaded from the memory to a SIMD register, and the
pixels in the shaded 4x4 block (f1, g1, h1, e2, j1, ..., a4) in
the search area are obtained using memory loads and shuffles.
The SAD value is calculated by a fused operation (sub-abs)
and summation using the adder tree. The first SAD value is
stored as the minimum SAD and is updated during subsequent
computations. This process repeats for 25 possible positions in
the 8x8 search area. The motion estimation process is highly
parallel and four groups of 16 SIMD lanes are utilized to
generate four SAD values at a time.

VII. RESULTS AND ANALYSIS

A. Methodology

TABLE IV
SUMMARY OF AREA AND POWER RUNNING H.264 CIF VIDEO AT 30FPS

The RTL Verilog model of SODA processor [1] was syn-
thesized in TSMC 180nm technology, and the power and
area results for 90nm technology were estimated using a
quadratic scaling factor based on Predictive Technology Model
[5]. The proposed architecture was implemented in the RTL
Verilog model and synthesized in TSMC 90nm using Synopsys
physical compiler. The PE area is 25% larger than SODA’s
estimated 90nm PE area. The clock frequency is targeted

for 300MHz, while SODA was targeted for 400MHz. The
area and power breakdown of this architecture running H.264
CIF video at 30fps are presented in Table IV. This video
encoder consumes about 81mW at 90nm, which is within the
requirements for mobile video.

B. Results

Fig. 13 shows the speedup of proposed architecture over
SODA for the H.264 kernel algorithms. The improvement is
broken into several architectural enhancements: wider SIMD
width (from 32 to 64), fused operation, buffer+bypass support,
and single cycle programmable crossbar. The wider SIMD
width allows H.264 algorithms to operate on twice as many
pixels and results in 72% of performance improvement over
SODA. The fast programmable crossbars expedites the data
alignment process, and accounts for another 25% improve-
ment. The fused operations and buffer+bypass support also
helps to boost the speed by about 16%. The energy-delay
product for the H.264 kernel algorithms are presented in
Fig. 14. On average, there is a 29% of energy-delay im-
provement due to lower clock frequency, reduced memory and
register file access supported by crossbar, fused operation, and
buffer+bypass support.

Fig. 13. Speedup over SODA for the key H.264 algorithms. The improve-
ments are broken down into several architectural enhancements - wider SIMD
width, fused operation, buffer+bypass support and fast programmable crossbar.

Fig. 14. Normalized Energy-Delay Product for H.264 kernel algorithms
compared to SODA.

Table V compares the power performance of our architec-
ture with state-of-the-art designs for H.264 baseline encoding.
We use power consumption per pixel/sec (mW/(Mpix/s)) as
the metric. Although the ASIC solution [17] outperforms the



programmable solutions, our proposed architecture has pro-
grammable flexibility and consumes significantly less power
compared to TI’s DSP solution.

ISSCC2007 TMS320DM6446 This work
[17] C64x+ DSP [18] 2 PEs

Resolution 720x480 720x480 352x288
Technology 130nm 90nm 90nm
Supply Voltage 0.9V 1.2V 1.0V
Clock Freq. 30MHz 594MHz 300MHz
Power consumption 27mW 415mW 68mW
Power efficiency 2.6 40 22
(mW/(Mpixel/sec))

TABLE V
COMPARISON WITH STATE-OF-THE ART H.264 ENCODERS.

VIII. RELATED WORK

There have been several architectural solutions for
H.264/AVC. Many of them are specialized architectures for
key kernels such as motion estimation, motion compensa-
tion [7], [9], interpolation [8] and deblocking [10], [11]. An
important consideration in all these architectures is efficient
memory access. For instance the deblocking filter architectures
reduce the number of memory accesses by manipulating data
stored in shift registers in [10] and using vector registers and
VLIW processing in [11]. Reducing the overhead in memory
accesses and data alignment in multimedia processing has
been addressed in systems such as MediaBreeze [6] by adding
hardware support for address generation, looping etc.

Efficient techniques for mapping H.264 onto multiprocessor
platforms have been proposed in [12], [13], [14], [15]. While
[12] focused on efficient partitioning of data, [13] proposed
a high speed multithreading implementation of the H.264
video encoder. The implementation in [14] focused on efficient
scheduling and memory hierarchy for the H.264 video encoder
for HDTV applications. A hybrid task pipelining scheme
which greatly reduced the internal memory size and bandwidth
was presented in [15].

Recently a FGPA based architecture, Video Specific Instruc-
tion Set Processor, has been proposed in [16]. The architecture
consists of hardware accelerators for inter prediction and en-
tropy coding, and specialized instructions for a programmable
processor for the rest of the kernels.

IX. CONCLUSION

The mobile multimedia processor requires high-
performance low-power solutions for high quality video
and wireless protocols. General purpose processors, digital
signal processors and ASICs are typically combined to
meet this requirement. Such a heterogeneous solution is
inefficient in terms of area, power, and flexibility. In this
paper, we presented a software-hardware co-design case study
of H.264 codec for a wide-SIMD architecture. Based on
the characteristics of H.264 kernel algorithms, we proposed
several key architectural enhancements including SIMD
partitioning, diagonal memory organization system, bypass
and temporary buffer support, fused operation support,

and area and energy efficient programmable crossbar use.
Our results show that we can achieve 2.13x speedup and
29% energy-delay improvement for the H.264 codec over a
wide-SIMD architecture, SODA.

ACKNOWLEDGMENT

This research is supported by ARM Ltd. and the Na-
tional Science Foundation under grants CNS-0615261, CNS-
0615135, and CCF-0347411.

REFERENCES

[1] Y. Lin et.al, “Soda: A low-power architecture for software radio,” Proc.
of the 33rd Annual International Symposium on Computer Architecture,
pp. 89–100, June 2005.

[2] I. Richardson, “H.264 and MPEG-4 video compression,” WILEY, 2003.
[3] N. Goel, A. Kumar, and P. Panda, “Power reduction in VLIW processor

with compiler driven bypass network,” Proc. of the 20th International
Conference on VLSI Design held jointly with 6th International Confer-
ence on Embedded Systems, pp. 233–238, Jan. 2007.

[4] K. Fan et.al, “Systematic register bypass customization for application-
specific processors,” Proc. of IEEE 14th International Conference on
Application-Specific Systems, Architectures, and Processors, pp. 64–74,
June 2003.

[5] Nanoscale Integration and Modeling Group, “Predictive technology
model.” http://www.eas.asu.edu/ nimo/

[6] D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia processing
with SIMD style extensions and architectural enhancements,” IEEE
Transactions on Computers, vol. 52, no. 8, pp. 1015–1031, Aug. 2003.

[7] R. Wang, J. Li, and C. Huang, “Motion compensation memory access
optimization strategies for H.264/AVC decoder,” Proc. of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, vol. 5,
pp. v97–v100, Mar. 2005.

[8] R. Wang et.al, “High throughput and low memory access sub-pixel
interpolation architecture for H.264/AVC HDTV decoder,” IEEE Trans-
actions on Consumer Electronics, vol. 51, no. 3, pp. 1006–1013, Aug.
2005.

[9] S.-Z. Wang et.al, “A new motion compensation design for H.264/AVC
decoder,” Proc. of IEEE International Symposium on Circuits and
Systems, pp. 4558–4561 Vol. 5, May 2005.

[10] C.-M. Chen and C.-H. Chen, “Configurable VLSI architecture for
deblocking filter in H.264/AVC,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 8, pp. 1072–1082, Aug. 2008.

[11] P. Dang, “High performance architecture of an application specific
processor for the H.264 deblocking filter,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 16, no. 10, pp. 1321–1334, Oct.
2008.

[12] R. G. E van der Tol, E Jaspers, “Mapping of H.264 decoding on a
multiprocessor architecture,” Proc. of SPIE Conference on Image and
Video Communications and Processing, pp. 707–718, Jan. 2003.

[13] E. Q. Li and Y.-K. Chen, “Implementation of H.264 encoder on general-
purpose processors with hyper-threading technology,” Proc. of SPIE
Conference on Visual Communications and Image Processing, vol. 5308,
pp. 384–395, Jan. 2004.

[14] T.-C. Chen et.al, “Analysis and architecture design of an HDTV720p
30 frames/s H.264/AVC encoder,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 6, pp. 673–688, June 2006.

[15] T.-C. Chen, C.-J. Lian, and L.-G. Chen, “Hardware architecture design of
an H.264/AVC video codec,” Proc. of Asia and South Pacific Conference
on Design Automation, Jan. 2006.

[16] S. D. Kim et.al, “ASIP approach for implementation of H.264/AVC,”
Journal of Signal Processing Systems, vol. 50, no. 1, pp. 53–67, Jan.
2008.

[17] T. C. Chen et.al, “2.8 to 62.7 mW low-power and power-aware H.264
encoder for mobile applications,” 2007 IEEE Symposium on VLSI
Circuits, pp. 222–223, June 2007.

[18] M. Bhatnagar, “TMS320DM6446/3 Power Consump-
tion Summary,” Texas Instruments Application Reports,
http://focus.ti.com/lit/an/spraad6a/spraad6a.pdf, Feb. 2008.

[19] M. Woh et.al, “AnySP: Anytime Anywhere Anyway Signal Processing,”
Proc. of the 36th Annual International Symposium on Computer Archi-
tecture, June 2009.


