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Advances in three-dimensional (3D) scanning have enabled the real-time capture of high-resolution 3D

videos. With these advances brings the challenge of streaming and storing 3D videos in a manner that

can be quickly and effectively used. This research addresses this challenge by generalizing the

Holovideo technique to video codecs that use the YUV color space such as the H.264 codec. With the

H.264 codec, we have achieved a compression ratio of over 6086:1 (Holovideo to OBJ) with a reasonably

high quality; utilizing an NVIDIA GeForce 9400 m GPU, we have realized 17 frames per second

encoding, and 28 frames per second decoding speed, making it a viable solution for real-time 3D video

compression.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in 3D scanning have enabled the real-time capture of
high-resolution 3D video. These advances have brought forth the
challenge of streaming and storing these high-resolution 3D video
frames in a format that can be quickly and efficiently used.
Classical approaches in 3D geometry compression compress the
3D coordinates and their attributes such as normals, UV coordi-
nates, etc., in a model format such as OBJ, PLY, STL. Although these
formats work well for static scans or structured meshes with
predefined animation, the same does not hold true for high-
resolution 3D video frames due to their unstructured animation
nature.

To deal with this challenge, different approaches have been
taken such as heuristic based encoding of 3D point clouds [1,2]
and image based encoding approaches [3–5]. Image based encod-
ing approaches work well, as the 3D geometry can be projected
into 2D images and then compressed using 2D image compres-
sion techniques. Since 2D image compression is a long studied
field, high compression ratios can be achieved with little loss of
quality. Later when the 3D geometry is needed, it can be
recovered from the 2D images using image based rendering.
There are three key steps to effectively compressing the geometry
with these techniques: (1) projecting the 3D geometry into 2D
images, (2) correctly encoding and decoding the projected images
with a 2D codec, (3) recovering the 3D geometry from the 2D
images.
ll rights reserved.
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This research addresses the second key step, correctly encod-
ing and decoding the projected images with a 2D codec. Typically,
2D video codecs are tailored to natural sinusoidally varying
images with color redundancies between frames. The codecs are
tailored to natural sinusoidally varying images with the transform
that they use, such as the discrete cosine transform or the integer
transform. These transforms are applied to image blocks and then
small variations are quantized off resulting in slightly lossy
encoding at high compression levels. Detecting and encoding
changes between frames instead of repeating nearly redundant
information leverages color redundancies between frames. With
this encoding certain frames are stored (keyframes) with changes
being applied to recover frames between the stored frames
(interframes) [6].

Previous research has shown that the Holoimage technique
[5,7] can be extended to 3D video by modifying the fringe
equations and then using OpenGL Shaders and asynchronous
direct memory access (DMA) transfers to the graphics processing
unit (GPU) [8]. This research used JPEG encoding on the frames
and then used Quicktime Run Length Encoding on each of the
frames to achieve a compressed 2D representation of the 3D
geometry. With this encoding, compression ratios of over 134:1
Holovideo frame to OBJ can be achieved, at 17 frames per second
encoding with an NVIDIA GeForce 9400 m GPU. Although good
compression is achieved with no noticeable artifacts, it is not
optimal as JPEG encoding in the RGB color space with Quicktime
Run Length Encoding is not a standard 2D video encoding
technique.

This research addresses this by extending the Holovideo
technique to the H.264 codec, which is a standard 2D video
codec. By applying a conversion to the planar YUV444 and
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YUV422 color formats, the Holovideo frames can be encoded with
the H.264 encoder. With this encoding, compression ratios of over
352:1 when compared to the OBJ file format have been achieved
with a mean squared error as low as 0.204%.

Section 2 explains the principle behind the technique, addres-
sing encoding, compressing, and decoding using OpenGL Shaders
(GLSL) and the H.264 codec. Section 3 shows experimental results
with a unit sphere and short 45 s 3D video, and Section 4
summarizes the paper.
Fig. 1. Holovideo system conceptual model. The virtual projection system projects

sinusoidal fringe patterns onto the object, the result is rendered by the graphics

pipeline, and then displayed on the screen. The screen view acts as a virtual

camera imaging system. Because both the projector and the camera are virtually

constructed, they can both be orthogonal devices. The angle between the

projection system and the camera imaging system is y.
2. Principle

2.1. Fringe projection technique

The fringe projection technique is a structure light method
from optical metrology that uses sinusoidally varying structured
light patterns. 3D information is recovered from phase which is
encoded in the sinusoidal pattern. To obtain the phase from the
recovered images, a phase-shifting algorithm is typically
employed. Phase shifting is used because of its numerous merits,
including the capability to achieve pixel-by-pixel spatial resolu-
tion during 3D shape recovery. Over the years, a number of phase-
shifting algorithms have been developed including three-step,
four-step, least-square algorithms, etc. [9].

In a real-world 3D imaging system making use of a fringe
projection technique, a three-step phase-shifting algorithm is
typically employed due to its ability to help reduce background
lighting and noise while using a small number of fringe patterns.
Three fringe images with equal phase shift can be described with
the following equations:

I1ðx,yÞ ¼ I0ðx,yÞþ I00ðx,yÞ cosðf�2p=3Þ ð1Þ

I2ðx,yÞ ¼ I0ðx,yÞþ I00ðx,yÞ cosðfÞ ð2Þ

I3ðx,yÞ ¼ I0ðx,yÞþ I00ðx,yÞ cosðfþ2p=3Þ ð3Þ

where I0ðx,yÞ is the average intensity, I00ðx,yÞ is the intensity
modulation, and fðx,yÞ is the phase to be found. Simultaneously
solving Eqs. (1)–(3) leads to

fðx,yÞ ¼ tan�1½
ffiffiffi

3
p
ðI1�I3Þ=ð2I2�I1�I3Þ� ð4Þ

This equation yields the wrapped phase fðx,yÞ ranging from 0 to
2p with 2p discontinuities. A conventional phase-unwrapping
algorithm can be adopted to remove these 2p phase jumps and
obtain a continuous phase map [10]. This algorithm simply
traverses the wrapped phase map adding integer values of 2p to
fðx,yÞ, which can be modeled with the following equation:

Fðx,yÞ ¼fðx,yÞþk� 2p ð5Þ

where fðx,yÞ is the wrapped phase, k is the integer number of
phase jumps, and Fðx,yÞ is the unwrapped phase. However, all
conventional phase-unwrapping algorithms suffer from the lim-
itations that they can neither resolve large step height changes
that cause phase changes larger than p nor discontinuous
surfaces.

2.2. Holovideo system setup

The Holovideo technique is a specialized fringe projection
technique that uses a virtual fringe projection system. This virtual
fringe projection system scans 3D scenes into 2D images, com-
presses and stores them, and then decompresses and recovers the
original 3D scenes. Holovideo utilizes the Holoimage technique
[5] to depth map 3D scenes into 2D images. Fig. 1 shows a
conceptual model of the Holovideo system. In this model, the
projector projects fringe images onto the scene and the camera
captures the reflected fringe images from another angle. The
projector in this conceptual model can be realized as a projective
texture implemented through the use of the OpenGL Shading
Language (GLSL), and the camera can be realized as the frame-
buffer. From the camera image, 3D information can be recovered
pixel-by-pixel if the geometric relationship between the projector
pixel (P) and the camera pixel (C) is known. Since the Holoimage
system is mathematically defined using a computer graphics
pipeline, both the camera and projector can be orthogonal devices
and their geometric relationship can be precisely defined. Thus,
converting from phase to 3D coordinates is very simple and can
be done in parallel [7].

2.3. Encoding

To encode the 3D scene, the Holovideo system uses the virtual
fringe projection system, which is created through the use of
OpenGL Shaders. These shaders color the 3D scene with a
structured light pattern defined by the following equations:

Irðx,yÞ ¼ 0:5þ0:5 sinð2px=PÞ ð6Þ

Igðx,yÞ ¼ 0:5þ0:5 cosð2px=PÞ ð7Þ

Ibðx,yÞ ¼ S � Flðx=PÞþS=2þðS�2Þ=2 � cos½2p �Modðx,PÞ=P1� ð8Þ

Here P is the fringe pitch, the number of pixels per fringe stripe,
P1 ¼ P=ðKþ0:5Þ is the local fringe pitch, K is an integer number, S

is the stair height in grayscale intensity value, Modða,bÞ is the
modulus operator to get a over b, and Fl(x) is the floor function to
get the integer number of x. The depth resolution is then
dependent on the pitch P with smaller pitches reducing quantiza-
tion noise but increasing spiking noise; a discussion of the effects
along with optimal values can be found in previous work [11].
Fig. 2 illustrates a typical structure pattern for Holovideo with
(a) showing the resulting pattern rendered as an RGB image, and
(b) a cross section of the pattern with the intensity of each color
channel graphed.

For the Holovideo encoding vertex shader, a model view
matrix for the projector and for the camera in the virtual structure
light scanner is needed. The model view matrix for the projector



Fig. 2. The encoded structured pattern used by the Holovideo technique. (a) The structured pattern displayed as an RGB image. (b) A graph of one cross section of the

structured pattern. Note that all channels use cosine waves to reduce problems associated with lossy encoding.

Fig. 3. Holovideo encoded unit sphere with H.264 encoding. (a) RGB Holovideo frame of unit sphere directly encoded by H.264. (b) Reconstructed unit sphere with

Holovideo frame from (a).
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is rotated around the z-axis by some angle (y¼ 301 in our case)
from the camera model view matrix. From here the vertex shader
passes the x, y values to the fragment shader as a varying variable
along with the projector model view matrix, so that x, y values for
each pixel can be determined from the projectors perspective. In
the fragment shader, each fragment is colored with the Eqs.
(6)–(8), and the resulting scene is rendered to a texture yielding
a Holovideo encoded frame. It is important to notice that instead
of directly using the stair image as proposed in Ref. [7], a cosine
function is used to represent this stair image as described by Eq.
(8).

Each frame of the 3D video is rendered to a texture in this
fashion, and then the resulting texture is pulled from the GPU to
the CPU where it can be transformed and then passed to a 2D
video codec. To mitigate the bottleneck of transferring the
textures from the GPU to the CPU, asynchronous DMA transfers
are employed using pixel buffer objects (PBOs).

2.4. Video compression

One of the challenges in directly taking Holovideo frames into
H.264 is that most H.264 codecs work in the YUV color space. If
the frames are directly passed into the codec, it will convert the
RGB Holovideo frame to a planar YUV frame and then compress it.
Coming back out, the information is decompressed and converted
back into RGB. If this process is done to the Holovideo frame
Fig. 3(a), large errors are introduced, shown in Fig. 3(b). One way
to address this issue would be to encode three separate movies
where in each movie the YUV components would correspond to a
specific color channel RGB. This would then allow for the data to
be compressed and then later decompressed and reconstructed,
but would require three separate synced video streams. Instead,
addressing this in a better way, we transform the Holovideo
frame directly into the planar YUV color space with the step
height channel in the Y component, and the fringe in the U and V,
shown by Fig. 4(a). Then the H.264 codec can directly compress
these frames with little loss of error shown in Fig. 4(b).

Another challenge associated with H.264 video encoding is
downsampling, which occurs with the frames. Since the human
eye is less sensitive to color variations (chrominance UV) versus
intensity variations (luminance Y), downsampling of the UV
components is typically employed. The H.264 codec supports this
by downsampling the UV components with YUV422 or YUV420
encoding. In this encoding scheme each pixel has an intensity or Y

component, but chrominance UV components are shared between
pixels. This reduces the overall bit rate with some lossy error
being introduced. Downsampling with YUV422 encoding on a
Holovideo frame is shown with Fig. 4(c).
2.5. Decoding on GPU

Decoding a Holovideo frame is a more involved process than
encoding, as there are more steps requiring multi-pass rendering,
but the process scales with the hardware through subsampling. In
the decoding pipeline, shown in Fig. 5, the five major steps that
need to be performed are: (1) calculating an unwrapped phase
map from the Holovideo frame, (2) filtering the unwrapped phase
map, (3) calculating a floating point depth map from the filtered
unwrapped phase map, (4) calculating normals from the floating
point depth map, (5) performing the final render. To accomplish
these five steps, multi-pass rendering can be utilized, saving the
results from each pass to a texture which allows neighboring
pixel value access during the proceeding steps.

During steps (1)–(4) an orthographic projection with a screen
aligned quad and render texture the size of the Holovideo frame is
used to perform image processing. Each input image is entered
into the shaders through a texture, the vertex shader simply



Fig. 4. Transformed Holovideo encoded unit sphere with H.264 encoding. (a) Planar YUV Holovideo frame of a unit sphere encoded by H.264. (b) Reconstructed unit sphere

if Holovideo frame is encoded from YUV444 into H.264. (c) Reconstructed unit sphere if Holovideo frame is encoded from YUV422 into H.264.

Fig. 5. Holovideo decoding pipeline. First, frames are decoded using the H.264 decoder on the CPU side, and frames are passed to the GPU as textures. Next from the

Holovideo frame, the unwrapped phase map is calculated and filtered, followed by calculating a depth map and normal map. Finally, final rendering is performed with the

depth map and normal map, resulting in the reconstructed scene.
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passes the four vertices through, and then the fragment shader
performs the pixel wise image processing.

To calculate the unwrapped phase map, step (1), we input the
Holovideo frame and apply Eq. (9) below, saving the resulting
unwrapped phase map to a floating point texture for the next step
in the pipeline. Eqs. (6)–(8) provide the phase uniquely for each
point

Fðx,yÞ ¼ 2p� Fl½ðIb�S=2Þ=S�þtan�1½ðIr�0:5Þ=ðIg�0:5Þ� ð9Þ

Unlike the phase obtained in Eq. (4) with 2p discontinuities,
the phase obtained here is already unwrapped without the
limitations of conventional phase unwrapping algorithms. There-
fore, scenes with large height variations can be encoded which is
not true when using conventional phase unwrapping algorithms.
It is also important to notice that under the virtual fringe
projection system, all lighting is eliminated, thus the phase can
be obtained by using only two fringe patterns with p=2 phase
shift. This allows for the third channel to be used for phase
unwrapping.

For step (2) we used a modified median filter similar to the one
proposed by McGuire [12]. The reason that median filtering needs
to be applied is due to sub-pixel sampling and quantization errors
during 2D image compression. Some areas of the phase Fðx,yÞ
have one-pixel jumps which result in large spikes in the decoded
geometry known as spiking noise. We found this problem can be
filtered out by a small 3�3 median filter. Instead of directly
applying the median filter, we inspect the median and if it is
different than the original value, we either add or subtract 2p
from the value which removes the spiking noise that is intro-
duced by having the stair image in a lossy color channel. For this
step, the unwrapped phase map is passed to the shaders and the
filtered unwrapped phase map is returned.
From the filtered unwrapped phase map obtained in step (2),
the normalized coordinates ðxn,yn,znÞ can be calculated, as [7]

xn ¼ j=W ð10Þ

yn ¼ i=W ð11Þ

zn ¼
PFðx,yÞ�2pi cosðyÞ

2pW sin y
ð12Þ

This yields a value zn in terms of P which is the fringe pitch, i, the
index of the pixel being decoded in the Holovideo frame, y, the
angle between the capture plane and the projection plane (y¼ 301
for our case), and W, the number of pixels horizontally.

From the normalized coordinates ðxn,yn,znÞ, the original 3D
coordinates can be recovered point by point forming a floating
point depth map which is step (3) in the decoding process

x¼ xn � ScþCx ð13Þ

y¼ yn � ScþCy ð14Þ

z¼ zn � ScþCz ð15Þ

Here Sc is the scaling factor to normalize the 3D geometry and (Cx,
Cy, Cz) are the center coordinates of the original 3D geometry.

Now that the depth map has been calculated, step (4) normal
calculation can be performed. This is done by calculating normal-
ized surface normals with adjacent polygons on the depth map,
and then normalizing the sum of these adjacent surface normals
to get a normalized point normal. These values are passed out of
the shader as a texture which forms the normal map.

Finally, the final rendering pass can be performed, step (5).
Before this step is performed, the projection is switched back to a
perspective projection, and the back screen buffer is bound as the
draw buffer. Then the final render shaders are bound and a plane
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of pixels is rendered out. In the vertex shader, the vertex is
modified according to the depth map. In the fragment shader, per
pixel lighting is applied using the normal map calculated during
step (4). To subsample the geometry, the number of pixels
rendered out in this stage can be reduced by some divisor of
the width and height of the Holovideo frame. This allows for a
simple subsampling mechanism, since the points will not get
calculated during the shader passes, reducing the level of detail
and computational load. This is what allows the Holovideo
technique to scale to different devices with various graphics
capabilities.
Fig. 6. The effect of downsampling and compressing the unit sphere with the H.264

Holovideo frame, (c) recovered planar YUV422 Holovideo frame, and (d)–(f) correspon
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between theoretical and observed value.
3. Experimental results

In all of our experiments we used a Holovideo system configured
as follows: 512ðWÞ � 512ðHÞ image resolution, y¼ 301 for the angle
between the projection and capture planes, fringe pitch P¼42, and
high-frequency modulation pitch P¼4. Previous work has com-
pared the Holovideo technique to other techniques [8], in this
discussion we will focus on the results of applying Holovideo with
H.264 encoding. To verify the performance of the proposed encod-
ing system, we first encoded a unit sphere which represents smooth
changing geometry. Fig. 6 shows the results. Fig. 6(a) shows the
codec. (a) Original planar YUV Holovideo frame, (b) recovered planar YUV444

ding reconstructed unit sphere.
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Fig. 8. Sample frame from a short 45 s 3D video clip captured using a real-time structured light scanner running at 30 frames per second. (a) The original rendered data

(Video 1), (b) the data with H.264 Holovideo encoding using the FFMPEG lossless_max preset (Video 2), (c) the data with H.264 Holovideo encoding using the FFMPEG

baseline settings (Video 3). FFMPEG lossless_max settings in the YUV444 color format give a compression ratio of over 352:1, and FFMPEG baseline settings in the YUV422

color format give a compression ratio of over 6086:1.
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original planar YUV Holovideo frame, Fig. 6(b) shows the recovered
planar YUV444 Holovideo frame, and Fig. 6(c) shows the recovered
planar YUV422 Holovideo frame. Fig. 6(d)–(f) shows the recon-
structed unit spheres with their respective encoding, Fig. 7(a)–(c)
shows cross sections of the sphere, and Fig. 7(d)–(f) shows plots of
the DZ. When downsampling on the color channels is used, bands
corresponding to the fringe patterns show up on the geometry as
noise, but the mean squared error remains at 0.204% and 0.415%,
respectively.

To further test the performance of the proposed encoding
system, we used it on a short 45 s 3D video clip captured using a
structured light scanner with an image resolution of 640ðHÞ �
480ðWÞ running at 30 frames per second [13]. The 3D frames were
Holovideo encoded and run through the H.264 encoder using the
FFMPEG lossless_max preset in a YUV444 color format, and using
the FFMPEG baseline preset in a YUV422 color format.
Fig. 8(a) shows a sample frame from the scanner (associated
Video 1), (b) the lossless_max preset Holoencoded frame (asso-
ciated Video 2), and (c) the baseline preset Holoencoded frame
(associated Video 3). The original size of the video in the OBJ
format was 42 GB. In the lossless_max preset Holovideo format,
the resulting video size is 119 MB resulting in a compression ratio
of over 352:1. Using the baseline preset Holovideo format, the
resulting video size is 6.9 MB resulting in a compression ratio of
over 6086:1.
4. Conclusion

We have presented a way to utilize the Holovideo technique
with 2D video codecs that use the YUV color space, specifically
the H.264 codec. Example frames of a unit sphere and a recorded
data set were encoded, decoded, and presented. A mean squared
error of only 0.204% was achieved when using the planar YUV444
color space and 0.415% when using planar YUV422. Applying the
technique to a short 45 s 3D video clip captured using a real-time
structured light scanner, a compression ratio of over 352:1 was
achieved when compared to the OBJ file format. Currently,
decoding at 28 frames per second with an NVIDIA GeForce
9400 m GPU can be achieved, with encoding at 17 frames
per second. Future work for this research includes ways of
minimizing interframe changes to optimize the H.264 codec’s
keyframe and interframe coding to maximize compression, along
with optimizing encoding parameters to achieve high compres-
sion with little loss of quality.
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