
Evaluating Fuzz Testing
George Klees, Andrew Ruef,

Benji Cooper
University of Maryland

Shiyi Wei
University of Texas at Dallas

Michael Hicks
University of Maryland

ABSTRACT
Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed
to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
fuzzing, evaluation, security

ACM Reference Format:
George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks.
2018. Evaluating Fuzz Testing. In 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18), October 15–19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3243734.3243804

1 INTRODUCTION
A fuzz tester (or fuzzer) is a tool that iteratively and randomly gener-
ates inputs with which it tests a target program. Despite appearing
“naive” when compared to more sophisticated tools involving SMT
solvers, symbolic execution, and static analysis, fuzzers are sur-
prisingly effective. For example, the popular fuzzer AFL has been
used to find hundreds of bugs in popular programs [1]. Comparing
AFL head-to-head with the symbolic executor angr, AFL found 76%
more bugs (68 vs. 16) in the same corpus over a 24-hour period [50].
The success of fuzzers has made them a popular topic of research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243804

Why do we think fuzzers work? While inspiration for new ideas
may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

• a compelling baseline fuzzer B to compare against;
• a sample of target programs—the benchmark suite;
• a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identified by crashing inputs;
• a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random
nature of fuzzing: Each fuzzing run on a target program may pro-
duce different results than the last due to the use of randomness.
As such, an evaluation should measure sufficiently many trials to
sample the overall distribution that represents the fuzzer’s perfor-
mance, using a statistical test [38] to determine that A’s measured
improvement over B is real, rather than due to chance.

Failure to perform one of these steps, or failing to follow rec-
ommended practice when carrying it out, could lead to misleading
or incorrect conclusions. Such conclusions waste time for practi-
tioners, who might profit more from using alternative methods
or configurations. They also waste the time of researchers, who
make overly strong assumptions based on an arbitrary tuning of
evaluation parameters.

We examined 32 recently published papers on fuzz testing (see
Table 1) located by perusing top-conference proceedings and other
quality venues, and studied their experimental evaluations. We
found that no fuzz testing evaluation carries out all of the above
steps properly (though some get close). This is bad news in theory,
and after carrying out more than 50000 CPU hours of experiments,
we believe it is bad news in practice, too. Using AFLFast [6] (as A)
and AFL (as baseline B), we carried out a variety of tests of their
performance. We chose AFLFast as it was a recent advance over
the state of the art; its code was publicly available; and we were
confident in our ability to rerun the experiments described by the
authors in their own evaluation and expand these experiments by
varying parameters that the original experimenters did not. This
choice was also driven by the importance of AFL in the literature:
14 out of 32 papers we examined used AFL as a baseline in their
evaluation. We targeted three binutils programs (nm, objdump, and
cxxfilt) and two image processing programs (gif2png and FFmpeg)
used in prior fuzzing evaluations [9, 44, 45, 55, 58]. We found that
experiments that deviate from the above recipe could easily lead
one to draw incorrect conclusions, for these reasons:

https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804


Fuzzing performance under the same configuration can vary sub-
stantially from run to run. Thus, comparing single runs, as nearly
2
3 of the examined papers seem to, does not give a full picture. For
example, on nm, one AFL run found just over 1200 crashing in-
puts while one AFLFast run found around 800. Yet, comparing the
median of 30 runs tells a different story: 400 crashes for AFL and
closer to 1250 for AFLFast. Comparing averages is still not enough,
though: We found that in some cases, via a statistical test, that an
apparent difference in performance was not statistically significant.

Fuzzing performance can vary over the course of a run. This means
that short timeouts (of less than 5 or 6 hours, as used by 11 papers)
may paint a misleading picture. For example, when using the empty
seed, AFL found no crashes in gif2png after 13 hours, while AFLFast
had found nearly 40. But after 24 hours AFL had found 39 and
AFLFast had found 52. When using a non-empty seed set, on nm
AFL outperformed AFLFast at 6 hours, with statistical significance,
but after 24 hours the trend reversed.

We similarly found substantial performance variations based on
the seeds used; e.g., with an empty seed AFLFast found more than
1000 crashes in nm but with a small non-empty seed it found only 24,
which was statistically indistinguishable from the 23 found by AFL.
And yet, most papers treated the choice of seed casually, apparently
assuming that any seed would work equally well, without providing
particulars.

Turning to measures of performance, 14 out of 32 papers we ex-
amined used code coverage to assess fuzzing effectiveness. Covering
more code intuitively correlates with finding more bugs [19, 30]
and so would seem to be worth doing. But the correlation may
be weak [28], so directly measuring the number of bugs found is
preferred. Yet only about 1

4 of papers used this direct measure. Most
papers instead counted the number of crashing inputs found, and
then applied a heuristic procedure in an attempt to de-duplicate
inputs that trigger the same bug (retaining a “unique” input for that
bug). The two most popular heuristics were AFL’s coverage profile
(used by 7 papers) and (fuzzy) stack hashes [36] (used by 7 pa-
pers). Unfortunately, there is reason to believe these de-duplication
heuristics are ineffective.

In an additional experiment we computed a portion of ground
truth. We applied all patches to cxxfilt from the version we fuzzed
up until the present. We grouped together all inputs that a par-
ticular patch caused to now gracefully exit [11], confirming that
the patch represented a single conceptual bugfix. We found that
all 57,142 crashing inputs deemed “unique” by coverage profiles
were addressed by 9 distinct patches. This represents a dramatic
overcounting of the number of bugs. Ultimately, while AFLFast
found many more “unique” crashing inputs than AFL, it only had a
slightly higher likelihood of finding more unique bugs in a given
run.

Stack hashes did better, but still over-counted bugs. Instead of
the bug mapping to, say 500 AFL coverage-unique crashes in a
given trial, it would map to about 46 stack hashes, on average. Stack
hashes were also subject to false negatives: roughly 16% of hashes
for crashes from one bug were shared by crashes from another bug.
In five cases, a distinct bug was found by only one crash, and that
crash had a non-unique hash, meaning that evidence of a distinct
bug would have been dropped by “de-duplication.”

This experiment, the most substantial of its kind, suggests that
reliance on heuristics for evaluating performance is unwise. A
better approach is to measure against ground truth directly by
assessing fuzzers against known bugs, as we did above, or by using
a synthetic suite such as CGC [14] or LAVA [16], as done by 6 papers
we examined. (8 other papers considered ground truth in part, but
often as “case studies” alongside general claims made using inputs
de-duplicated by stack hashes or coverage profiles.)

Overall, fuzzing performance may vary with the target program,
so it is important to evaluate on a diverse, representative bench-
mark suite. In our experiments, we found that AFLFast performed
generally better than AFL on binutils programs (basically match-
ing its originally published result, when using an empty seed), but
did not provide a statistically significant advantage on the image
processing programs. Had these programs been included in its
evaluation, readers might have drawn more nuanced conclusions
about its advantages. In general, few papers use a common, diverse
benchmark suite; about 6 used CGC or LAVA-M, and 2 discussed the
methodology in collecting real-world programs, while the rest used
a few handpicked programs, with little overlap in these choices
among papers. The median number of real-world programs used
in the evaluation was 7, and the most commonly used programs
(binutils) were shared by only four papers (and no overlap when
versions are considered). As a result, individual evaluations may
present misleading conclusions internally, and results are hard to
compare across papers.

Our study (outlined in Section 3) suggests that meaningful sci-
entific progress on fuzzing requires that claims of algorithmic im-
provements be supported by more solid evidence. Every evaluation
in the 32 papers we looked at lacks some important aspect in this
regard. In this paper we propose some clear guidelines to which
future papers’ evaluations should adhere. In particular, researchers
should perform multiple trials and use statistical tests (Section 4);
they should evaluate different seeds (Section 5), and should consider
longer (≥ 24 hour vs. 5 hour) timeouts (Section 6); and they should
evaluate bug-finding performance using ground truth rather than
heuristics such as “unique crashes” (Section 7). Finally, we argue for
the establishment and adoption of a good fuzzing benchmark, and
sketch what it might look like. The practice of hand selecting a few
particular targets, and varying them from paper to paper, is prob-
lematic (Section 8). A well-designed and agreed-upon benchmark
would address this problem. We also identify other problems that
our results suggest are worth studying, including the establishment
of better de-duplication heuristics (a topic of recent interest [42, 51]),
and the use of algorithmic ideas from related areas, such as SAT
solving.

2 BACKGROUND
There are many different dynamic analyses that can be described as
“fuzzing.” A unifying feature of fuzzers is that they operate on, and
produce, concrete inputs. Otherwise, fuzzers might be instantiated
with many different design choices and many different parameter
settings. In this section, we outline the basics of how fuzzers work,
and then touch on the advances of 32 recently published papers
which form the core of our study on fuzzing evaluations.



Core fuzzing algorithm:
corpus← initSeedCorpus()
queue← ∅
observations← ∅
while ¬isDone(observations,queue) do

candidate← choose(queue, observations)
mutated← mutate(candidate,observations)
observation← eval(mutated)
if isInteresting(observation,observations) then

queue← queue ∪ mutated
observations← observations ∪ observation

end if
end while

parameterized by functions:
• initSeedCorpus: Initialize a new seed corpus.
• isDone: Determine if the fuzzing should stop or not based
on progress toward a goal, or a timeout.
• choose: Choose at least one candidate seed from the queue
for mutation.
• mutate: From at least one seed and any observations made
about the program so far, produce a new candidate seed.
• eval: Evaluate a seed on the program to produce an obser-
vation.
• isInteresting: Determine if the observations produced from
an evaluation on a mutated seed indicate that the input
should be preserved or not.

Figure 1: Fuzzing, in a nutshell

2.1 Fuzzing Procedure
Most modern fuzzers follow the procedure outlined in Figure 1. The
process begins by choosing a corpus of “seed” inputs with which to
test the target program. The fuzzer then repeatedly mutates these
inputs and evaluates the program under test. If the result produces
“interesting” behavior, the fuzzer keeps the mutated input for future
use and records what was observed. Eventually the fuzzer stops,
either due to reaching a particular goal (e.g., finding a certain sort
of bug) or reaching a timeout.

Different fuzzers record different observations when running
the program under test. In a “black box” fuzzer, a single observa-
tion is made: whether the program crashed. In “gray box” fuzzing,
observations also consist of intermediate information about the
execution, for example, the branches taken during execution as
determined by pairs of basic block identifiers executed directly in
sequence. “White box” fuzzers can make observations and modifica-
tions by exploiting the semantics of application source (or binary)
code, possibly involving sophisticated reasoning. Gathering addi-
tional observations adds overhead. Different fuzzers make different
choices, hoping to trade higher overhead for better bug-finding
effectiveness.

Usually, the ultimate goal of a fuzzer is to generate an input
that causes the program to crash. In some fuzzer configurations,
isDone checks the queue to see if there have been any crashes, and
if there have been, it breaks the loop. Other fuzzer configurations
seek to collect as many different crashes as they can, and so will not

stop after the first crash. For example, by default, libfuzzer [34]
will stop when it discovers a crash, while AFL will continue and
attempt to discover different crashes. Other types of observations
are also desirable, such as longer running times that could indicate
the presence of algorithmic complexity vulnerabilities [41]. In any
of these cases, the output from the fuzzer is some concrete input(s)
and configurations that can be used from outside of the fuzzer
to reproduce the observation. This allows software developers to
confirm, reproduce, and debug issues.

2.2 Recent Advances in Fuzzing
The effectiveness of fuzz testing has made it an active area of re-
search. Performing a literature search we found 32 papers published
between 2012 and 2018 that propose and study improvements to
various parts of the core fuzzing algorithm; 25 out of 32 papers
we examined were published since 2016. To find these papers, we
started from 10 high-impact fuzzing papers published in top secu-
rity venues. Then we chased citations to and from these papers. As
a sanity check, we also did a keyword search of titles and abstracts
of the papers published since 2012. Finally, we judged the relevance
based on target domain and proposed advance, filtering papers that
did not fit.

Table 1 lists these papers in chronological order. Here we briefly
summarize the topics of these papers, organized by the part of the
fuzzing procedure they most prominently aim to improve. Ulti-
mately, our interest is in how these papers evaluate their claimed
improvements, as discussed more in the next section.

initSeedCorpus. Skyfire [53] and Orthrus [49] propose to im-
prove the initial seed selection by running an up-front analysis on
the program to bootstrap information both for creating the corpus
and assisting the mutators. QuickFuzz [20, 21] allows seed gener-
ation through the use of grammars that specify the structure of
valid, or interesting, inputs. DIFUZE performs an up-front static
analysis to identify the structure of inputs to device drivers prior
to fuzzing [13].

mutate. SYMFUZZ [9] uses a symbolic executor to determine
the number of bits of a seed to mutate. Several other works change
mutate to be aware of taint-level observations about the program
behavior, specifically mutating inputs that are used by the program
[8, 10, 33, 44]. Where other fuzzers use pre-defined data mutation
strategies like bit flipping or rand replacement, MutaGen uses frag-
ments of the program under test that parse or manipulate the input
as mutators through dynamic slicing [29]. SDF uses properties of
the seeds themselves to guide mutation [35]. Sometimes, a grammar
is used to guide mutation [23, 57]. Chizpurfle’s [27] mutator exploits
knowledge of Java-level language constructs to assist in-process
fuzzing of Android system services.

eval. Driller [50] and MAYHEM [8] observe that some condi-
tional guards in the program are difficult to satisfy via brute force
guessing, and so (occasionally) invoke a symbolic executor during
the eval phase to get past them. S2F also makes use of a symbolic
executor during eval [58]. Other work focuses on increasing the
speed of eval by making changes to the operating system [56] or
using different low level primitives to observe the effect of execu-
tions [23, 25, 47]. T-Fuzz [39] will transform the program to remove
checks on the input that prevent new code from being reached.



MEDS [24] performs finer grained run time analysis to detect er-
rors during fuzzing.

isInteresting. While most papers focus on the crashes, some
work changes observation to consider different classes of program
behavior as interesting, e.g., longer running time [41], or differ-
ential behavior [40]. Steelix [33] and Angora [10] instrument the
program so that finer grained information about progress towards
satisfying a condition is exposed through observation. Dowser and
VUzzer [22, 44] uses a static analysis to assign different rewards
to program points based on either a likely-hood estimation that
traveling through that point will result in a vulnerability, or for
reaching a deeper point in the CFG.

choose. Several works select the next input candidate based on
whether it reaches particular areas of the program [5, 6, 32, 44].
Other work explores different algorithms for selecting candidate
seeds [45, 55].

3 OVERVIEW AND EXPERIMENTAL SETUP
Our interest in this paper is assessing the existing research practice
of experimentally evaluating fuzz testing algorithms. As mentioned
in the introduction, evaluating a fuzz testing algorithm A requires
several steps: (a) choosing a baseline algorithm B against which to
compare; (b) choosing a representative set of target programs to
test; (c) choosing how to measure A’s vs. B’s performance, ideally
as bugs found; (d) filling in algorithm parameters, such as how
seed files are chosen and how long the algorithm should run; and
(e) carrying out multiple runs for both A and B and statistically
comparing their performance.

Research papers on fuzz testing differ substantially in how they
carry out these steps. For each of the 32 papers introduced in Sec-
tion 2.2, Table 1 indicates what benchmark programs were used
for evaluation; the baseline fuzzer used for comparison; the num-
ber of trials carried out per configuration; whether variance in
performance was considered; how crashing inputs were mapped
to bugs (if at all); whether code coverage was measured to judge
performance; how seed files were chosen; and what timeout was
used per trial (i.e., how long the fuzzer was allowed to run). Expla-
nations for each cell in the table are given in the caption; a blank
cell means that the paper’s evaluation did not mention this item.

For example, the AFLFast [6] row in Table 1 shows that the
AFLFast’s evaluation used 6 real-world programs as benchmarks
(column 2); used AFL as the baseline fuzzer (column 3); ran each
experiment 8 times (column 4) without reporting any variance
(column 5); measured and reported crashes, but also conducted
manual triage to obtain ground truth (column 6); did not measure
code coverage (column 7); used an empty file as the lone input seed
(column 8); and set 6 hours and 24 hours as timeouts for different
experiments (column 9).

Which of these evaluations are “good” and which are not, in
the sense that they obtain evidence that supports the claimed tech-
nical advance? In the following sections we assess evaluations
both theoretically and empirically, carrying out experiments that
demonstrate how poor choices can lead to misleading or incorrect
conclusions about an algorithm’s fitness. In some cases, we believe
it is still an open question as to the “best” choice for an evaluation,
but in other cases it is clear that a particular approach should be

taken (or, at least, certain naive approaches should not be taken).
Overall, we feel that every existing evaluation is lacking in some
important way.

We conclude this section with a description of the setup for our
own experiments.

Fuzzers. For our experiments we use AFL (with standard config-
uration parameters) 2.43b as our baseline B, and AFLFast [6] as our
“advanced” algorithm A. We used the AFLFast version from July
2017 (cloned from Github) that was based on AFL version 2.43b.
Note that these are more recent versions than those used in Böhme
et al’s original paper [6]. Some, but not all, ideas from the original
AFLFast were incorporated into AFL by version 2.43b. This is not an
issue for us since our goal is not to reproduce AFLFast’s results, but
rather to use it as a representative “advanced” fuzzer for purposes
of considering (in)validity of approaches to empirically evaluating
fuzzers. (We note, also, that AFL served as the baseline for 14/32
papers we looked at, so using it in our experiments speaks directly
to those evaluations that used it.) We chose it and AFL because
they are open source, easy to build, and easily comparable. We also
occasionally consider a configuration we call AFLNaive, which is
AFL with coverage tracking turned off (using option -n), effectively
turning AFL into a black box fuzzer.

Benchmark programs. We used the following benchmark pro-
grams in our experiments: nm, objdump, cxxfilt (all from binutils-
2.26), gif2png, and FFmpeg. All of these programs were obtained
from recent evaluations of fuzzing techniques. FFmpeg-n0.5.10 was
used in FuzzSim [55]. binutils-2.26 was the subject of the AFLFast
evaluation [6], and only the three programs listed above had dis-
coverable bugs. gif2png-2.5.8 was tested by VUzzer [44].1 We do
not claim that this is a complete benchmark suite; in fact, we think
that a deriving a good benchmark suite is an open problem. We
simply use these programs to demonstrate how testing on different
targets might lead one to draw different conclusions.

Performance measure. For our experiments we measured the
number of “unique” crashes a fuzzer can induce over some period of
time, where uniqueness is determined by AFL’s notion of coverage.
In particular, two crashing inputs are considered the same if they
have the same (edge) coverage profile. Though this measure is not
uncommon, it has its problems; Section 7 discusses why, in detail.

Platform and configuration. Our experiments were conducted
on three machines. Machines I and II are equipped with twelve
2.9GHz Intel Xenon CPUs (each with 2 logical cores) and 48GB
RAM running Ubuntu 16.04. Machine III has twenty-four 2.4GHz
CPUs and 110GB RAM running Red Hat Enterprise Linux Server
7.4. To account for possible variations between these systems, each
benchmark program was always tested on the same machine, for
all fuzzer combinations. Our testing script took advantage of all the
CPUs on the system to run as many trials in parallel as possible.
One testing subprocess was spawned per CPU and confined to it
through CPU affinity. Every trial was allowed to run for 24 hours,
and we generally measured at least 30 trials per configuration. We
also considered a variety of seed files, including the empty file,

1Different versions of FFmpeg and gif2png were assessed by other papers [9, 45, 58],
and likewise for binutils [5, 32, 40].



paper benchmarks baseline trials variance crash coverage seed timeout
MAYHEM[8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H

COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R, Z S L V 24H

SDF[35] R(1) Z, O O V 5D
Driller[50] C(126) A G L, E N 24H

QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E 6H, 24H

SeededFuzz[54] R(5) O M O G, R 2H
[57] R(2) A, O L, E V 2H

AFLGo[5] R(?) A, O 20 S L V/E 8H, 24H
VUzzer[44] C(63), L, R(10) A G, S, O N 6H, 24H
SlowFuzz[41] R(10) O 100 - N
Steelix[33] C(17), L, R(5) A, V, O C, G L, E, M N 5H
Skyfire[53] R(4) O ? L, M R, G LONG
kAFL[47] R(3) O 5 C, G* V 4D, 12D

DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) A, L, O 80 C S, G* V >7D

Chizpurfle[27] R(1) O G* G -
VDF[25] R(18) C E V 30D

QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) O 5 G G 24H

NEZHA[40] R(6) A, L, O O R
[56] G(10) A, L V 5M

S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) A, V, O 5 G, C L, E N 5H
T-Fuzz[39] C(296), L, R(4) A, O 3 C, G* N 24H
MEDS[24] S(2), R(12) O 10 C N 6H

Table 1: Summary of past fuzzing evaluation. Blank cell means that the paper’s evaluation did not mention this item; - means it was not
relevant; ? means the element was mentioned but with insufficient detail to be clear about it. Benchmarks: R means real-world programs,
C means CGC data-set, L means LAVA-M benchmark, S means programs with manually injected bugs, G means Google fuzzer test suite.
Baseline: A means AFL, B means BFF [3], L means libfuzzer [34], R means Radamsa [43], Z means Zzuf [60], O means other baseline
used by no more than 1 paper. Trials: number of trials. Variance: C means confidence intervals. Crash: S means stack hash used to
group related crashes during triage, O means other tools/methods used for triage, C means coverage profile used to distinguish crashes, G
means crashes triaged according to ground truth, G* means manual efforts partially obtained ground truth for triaging. Coverage: L means
line/instruction/basic-block coverage, M means method coverage, E means control-flow edge or branch coverage, O means other coverage
information. Seed: R means randomly sampled seeds, M means manually constructed seeds, G means automatically generated seed, N means
non-empty seed(s) but it was not clear if the seed corpus was valid, V means the paper assumes the existence of valid seed(s) but it was not
clear how the seed corpus was obtained, E means empty seeds, / means different seeds were used in different programs, but only one kind of
seeds in one program. Timeout: times reported in minutes (M), hours (H) and/or days (D).

randomly selected files of the right type, and manually-generated
(but well-formed) files.

4 STATISTICALLY SOUND COMPARISONS
All modern fuzzing algorithms fundamentally employ randomness
when performing testing, most notably when performingmutations,
but sometimes in other ways too. As such, it is not sufficient to
simply run fuzzer A and baseline B once each and compare their
performance. Rather, both A and B should be run for many trials,
and differences in performance between them should be judged.

Perhaps surprisingly, Table 1 shows that most (18 out of 32)
fuzzing papers we considered make no mention of the number
of trials performed. Based on context clues, our interpretation is
that they each did one trial. One possible justification is that the
randomness “evens out;” i.e., if you run long enough, the random
choices will converge and the fuzzer will find the same number of
crashing inputs. It is clear from our experiments that this is not
true—fuzzing performance can vary dramatically from run to run.

Consider the results presented in Figure 2, which graphs the
cumulative number of crashes (the Y axis) we found over time (the
X axis) by AFL (blue), and AFLFast (red), each starting with an



(a) nm: p < 10−13 (b) objdump: p < 0.001 (c) cxxfilt: p < 10−10

(d) FFmpeg: p = 0.379 (e) gif2png: p = 0.0676

Figure 2: Crashes found over time (empty seed). Solid line is median; dashed lines are confidence intervals, and max/min.

empty seed. In each plot, the solid line represents the median result
from 30 runs while the dashed lines represent the maximum and
minimum observed results, and the lower and upper bounds of 95%
confidence intervals for a median [12]. (The outermost dashed lines
are max/min, the inner ones are the CIs.)

It should be clear from the highly varying performance on these
plots that considering only a single run could lead to the wrong
conclusion. For example, suppose the single run on FFmpeg for AFL
turned out to be its maximum, topping out at 550 crashes, while the
single run on AFLFast turned out to be its minimum, topping out
at only 150 crashes (Figure 2d). Just comparing these two results,
we might believe that AFLFast provides no advantage over AFL. Or
we might have observed AFLFast’s maximum and AFL’s minimum,
and concluded the opposite.

Performing multiple trials and reporting averages is better, but
not considering variance is also problematic. In Table 1, we can
see that 11 out of the 14 papers that did consider multiple trials
did not characterize the performance variance (they have a blank
box in the variance column). Instead, each of them compared the
“average” performance (we assume: arithmetic mean) of A and B
when drawing conclusions, except for Dowser [22] that reported
median, and two [20, 59] that did not mention how the “average”
was calculated.

The problem is that with a high enough variance, a difference
in averages may not be statistically significant. A solution is to
use a statistical test [38]. Such a test indicates the likelihood that a
difference in performance is real, rather than due to chance. Arcuri
and Briand [2] suggest that for randomized testing algorithms (like

fuzzers), one should use the Mann Whitney U-test to determine the
stochastic ranking ofA andB, i.e., whether the outcomes of the trials
inA’s data sample are more likely to be larger than outcomes in B’s.
Mann Whitney is non parametric in that it makes no assumption
about the distribution of a randomized algorithm’s performance;
by contrast, the standard t-test assumes a normal distribution.

Returning to our experiments, we can see where simply compar-
ing averages may yield wrong conclusions. For example, for gif2png,
after 24 hours AFLFast finds a median of 51 crashes while for AFL
it is 39 (a difference of 12). But performing the Mann Whitney
test yields a p value of greater than 0.05, suggesting the differ-
ence may not be statistically significant, even on the evidence of
thirty 24-hour trials. For FFmpeg, AFLFast’s median is 369.5 crashes
while AFL’s is 382.5, also a difference of about 12 crashes, this time
favoring AFL. Likewise, Mann Whitney deems the difference in-
significant. On the other hand, for nm the advantage of AFLFast
over AFL is extremely unlikely to occur by chance.

The three papers in Table 1 with “C” in the variance column
come the closest to the best practice by at least presenting confi-
dence intervals along with averages. But even here they stop short
of statistically comparing the performance of their approach against
the baseline; they leave it to the reader to visually judge this dif-
ference. This is helpful but not as conclusive as a (easy to perform)
statistical test.

Discussion. While our recommendation to use statistical tests
should be uncontroversial, there can be further debate on the best



(a) empty seed
p1 = 0.379
p2 < 10−15

(b) 1-made seed
p1 = 0.048
p2 < 10−11

(c) 3-made seeds
p1 > 0.05
p2 < 10−10

(d) 1-sampled seeds
p1 > 0.05
p2 < 10−5

(e) 3-sampled seeds
p1 > 0.05
p2 < 10−5

(f) 9-sampled seeds
p1 > 0.05
p2 < 10−6

Figure 3: FFmpeg results with different seeds. Solid line is median result; dashed lines are confidence intervals. p1 and p2 are
the p-values for the statistical tests of AFL vs. AFLFast and AFL vs. AFLNaive, respectively.

choice of test. In particular, two viable alternatives are the permu-
tation test [17] and bootstrap-based tests [7]. These tests work by
treating the measured data as a kind of stand-in for the overall pop-
ulation, systematically comparing permutations and re-samples
of measured data to create rankings with confidence intervals.
Whether such methods are more or less appropriate than Mann
Whitney is unclear to us, so we follow Arcuri and Briand [2].

Determining that the median performance of fuzzer A is greater
than fuzzer B is paramount, but a related question concerns effect
size. Just because A is likely to be better than B doesn’t tell us how
much better it is. We have been implicitly answering this question
by looking at the difference of the measured medians. Statistical
methods could also be used to determine the likelihood that this
difference represents the true difference. Arcuri and Briand suggest
Vargha and Delaney’s Â12 statistics [52] (which employ elements
of the Mann Whitney calculation). Bootstrap methods can also be
employed here.

5 SEED SELECTION
Recall from Figure 1 that prior to iteratively selecting and testing
inputs, the fuzzer must choose an initial corpus of seed inputs. Most
(27 out of 32, per Section 2.2) recent papers focus on improving
the main fuzzing loop. As shown in column seed in Table 1, most

papers (30/32) used a non-empty seed corpus (entries with G, R,
M, V, or N). A popular view is that a seed should be well-formed
(“valid”) and small—such seeds may drive the program to execute
more of its intended logic quickly, rather than cause it to terminate
at its parsing/well-formedness tests [31, 44, 45, 53]. And yet, many
times the details of the particular seeds used were not given. En-
try ’V’ appears 9 times, indicating a valid seed corpus was used,
but providing no details. Entry ’N’ appears 10 times, indicating a
non-empty seed, but again with no details as to its content. Two
papers [5, 6] opted to use an empty seed (entry ‘E’). When we asked
them about it, they pointed out that using an empty seed is an easy
way to baseline a significant variable in the input configuration.
Other papers used manually or algorithmically constructed seeds,
or randomly sampled ones.

It may be that the details of the initial seed corpus are unim-
portant; e.g., that no matter which seeds are used, algorithmic
improvements will be reflected. But it’s also possible that there is
a strong and/or surprising interaction between seed format and
algorithm choice which could add nuance to the results [37]. And
indeed, this is what our results suggest.

We tested FFmpeg with different seeds including the empty seed,
samples of existing video files (“sampled” seeds) and randomly-
generated videos (“made” seeds). For the sampled seeds, videos



empty 1-made
FFmpeg, AFLNaive 0 (< 10−15) 5000 (< 10−11)

FFmpeg, AFL 382.5 102
FFmpeg, AFLFast 369.5 (= 0.379) 129 (< 0.05)

nm, AFL 448 23
nm, AFLFast 1239 (< 10−13) 24 (= 0.830)
objdump, AFL 6.5 5

objdump, AFLFast 29 (< 10−3) 6 (< 10−2)
cxxfilt, AFL 540.5 572.5

cxxfilt, AFLFast 1400 (< 10−10) 1364 (< 10−10)
Table 2: Crashes found with different seeds. Median number of
crashes at the 24-hour timeout.

were drawn from the FFmpeg samples website.2 Four samples each
were taken from the AVI, MP4, MPEG1, and MPEG2 sub-directories,
and then the files were filtered out to only include those less than 1
MiB, AFL’s maximum seed size, leaving 9-sampled seeds total. This
set was further pared down to the smallest of the video files to
produce 3-sampled and 1-sampled seeds. For the made seeds, we
generated video and GIF files by creating 48 random video frames
with videogen (a tool included with FFmpeg), 12 seconds of audio
with audiogen (also included), and stitching all of them together
with FFmpeg into 3-made MP4, MPG, and AVI files, each at 4 fps.
The 1-made seed is the generated MP4 file. We also tested nm,
objdump, and cxxfilt using the empty seed, and a 1-made seed. For
nm and objdump, the 1-made seed was generated by compiling a
hello-world C program. The 1-made seed of cxxfilt was generated
as a file with 16 random characters, chosen from the set of letters
(uppercase and lowercase), digits 0-9, and the underscore, which is
the standard alphabet of mangled C++ names.

Results with these different seed choices for FFmpeg are shown
in Figure 3. One clear trend is that for AFL and AFLFast, the empty
seed yields far more crashing inputs than any set of valid, non-
empty ones. On the other hand, for AFLNaive the trend is reversed.
Among the experiments with non-empty seeds, performance also
varies. For example, Figure 3(b) and Figure 3(d) show very different
performance with a single, valid seed (constructed two different
ways). The former finds around 100 crashes for AFL and AFLFast
after 24 hours, while the latter finds less than 5.

The top part of Table 2 zooms in on the data from Figure 3(a)
and (b) at the 24-hour mark. The first column indicates the target
program and fuzzer used; the second column (“empty”) indicates
the median number of crashes found when using an empty seed;
and the last column (“1-made”) indicates the median number of
crashes found when using a valid seed. The parenthetical in the
last two columns is the p-value for the statistical test of whether
the difference of AFLFast or AFLNaive performance from AFL is
real, or due to chance. For AFL and AFLFast, an empty seed pro-
duces hundreds of crashing inputs, while for AFLNaive, it produces
none. However, if we use 1-made or 3-made seeds, AFLNaive found
significantly more crashes than AFL and AFLFast (5000 vs. 102/129).

The remainder of Table 2 reproduces the results of the AFLFast
evaluation [6] in the empty column, but then reconsiders it with a

2http://samples.ffmpeg.org

valid seed in the 1-made column. Similar to the conclusion made
by the AFLFast paper, AFLFast is superior to AFL in crash finding
ability when using the empty seed (with statistical significance).
However, when using 1-made seeds, AFLFast is not quite as good:
it no longer outperforms AFL on nm, and both AFL and AFLFast
generally find fewer crashes.

In sum, it is clear that a fuzzer’s performance on the same pro-
gram can be very different depending on what seed is used. Even
valid, but different seeds can induce very different behavior. Assum-
ing that an evaluation is meant to show that fuzzer A is superior to
fuzzer B in general, our results suggest that it is prudent to consider
a variety of seeds when evaluating an algorithm. Papers should be
specific about how the seeds were collected, and better still to make
available the actual seeds used. We also feel that the empty seed
should be considered, despite its use contravening conventional
wisdom. In a sense, it is the most general choice, since an empty file
can serve as the input of any file-processing program. If a fuzzer
does well with the empty seed across a variety of programs, perhaps
it will also do well with the empty seed on programs not yet tested.
And it takes a significant variable (i.e., which file to use as the seed)
out of the vast configuration space.

6 TIMEOUTS
Another important question is how long to run a fuzzer on a partic-
ular target. The last column of Table 1 shows that prior experiments
of fuzzers have set very different timeouts. These generally range
from 1 hour to days and weeks.3 Common choices were 24 hours
(10 papers) and 5 or 6 hours (7 papers). We observe that recent
papers that used LAVA as the benchmark suite chose 5 hours as the
timeout, possibly because the same choice was made in the original
LAVA paper [16]. Six papers ran fuzzers for more than one day.

Most papers we considered reported the timeout without justi-
fication. The implication is that beyond a certain threshold, more
running time is not needed as the distinction between algorithms
will be clear. However, we found that relative performance between
algorithms can change over time, and that terminating an experi-
ment too quickly might yield an incomplete result. As an example,
AFLFast’s evaluation shows that AFL found no bugs in objdump
after six hours [6], but running AFL longer seems to tell a different
story, as shown in Figure 2b. After six hours, both AFL and AFLFast
start to find crashes at a reasonable clip. Running AFL on gif2png
shows another interesting result in Figure 2e. The median number
of crashes found by AFL was 0 even after 13 hours, but with only
7 more hours, it found 40 crashes. Because bugs often reside in
certain parts of the program, fuzzing detects the bugs only when
these parts are eventually explored. Figure 4 presents the results of
AFL and AFLFast running with three sampled seeds on nm. After
6 hours none of the AFL runs found any bugs in nm, while the
median number of crashes found by AFLFast was 4; Mann Whitney
says that this difference is significant. But at 24 hours, the trend is
reversed: AFL has found 14 crashes and AFLFast only 8. Again, this
difference is significant.

What is a reasonable timeout to consider? Shorter timeouts are
convenient from a practical perspective, since they require fewer

3[56] is an outlier that we do not count here: it uses 5-minute timeout because its
evaluation focuses on test generation rate instead of bug finding ability.

http://samples.ffmpeg.org


Figure 4: nm with three sampled seeds. At 6 hours: AFLFast
is superior to AFL with p < 10−13. At 24 hours: AFL is supe-
rior to AFLFast with p = 0.000105.

overall hardware resources. Shorter times might be more useful
in certain real-world scenarios, e.g., as part of an overnight run
during the normal development process. On the other hand, longer
runs might illuminate more general performance trends, as our
experiments showed. Particular algorithms might also be better
with longer running times; e.g., they could start slow but then
accelerate their bug-finding ability as more tests are generated. For
example, Skyfire took several days before its better performance
(over AFL) became clear [53].

We believe that evaluations should include plots, as we have
been (e.g., in Figure 4), that depict performance over time. These
runs should consider at least a 24 hour timeout; performance for
shorter times can easily be extracted from such longer runs.

Discussion. In addition to noting performance at particular times
(e.g., crash counts at 5, 8 and 24 hours), one could also report area
under curve (AUC) as a less punctuated performance measure. For
example, a fuzzer that found one crash per second for five seconds
would have an AUC of 12.5 crash-seconds whereas a fuzzer that
found five crashes too, but all between seconds 4 and 5, would have
an AUC of 2.5 crash-seconds. These measures intuitively reflect
that finding crashes earlier and over time is preferred to finding a
late burst. On the other hand, this measure might prefer a steady
crash finder that peaks at 5 crashes to one that finds 10 at the last
gasp; aren’t more crashes better? As such, AUC measures are not a
substitute for time-based performance plots.

7 PERFORMANCE MEASURES
So far, we have focused on measuring fuzzer performance using
“unique” crashes found, which is to say, inputs that induce a “unique”
crash (defined shortly). As crashes are symptoms of potentially se-
rious bugs, measuring a fuzzer according to the number of crashing
inputs it produces seems natural. But bugs and crashing inputs
are not the same thing: Many different inputs could trigger the
same bug. For example, a buffer overrun will likely cause a crash
no matter what the input data consists of so long as that data’s
size exceeds the buffer’s length. As such, simply counting crashing
inputs as a measure of performance could be misleading: fuzzer A

could find more crashes than fuzzer B but find the same or fewer
actual bugs.

As such, many papers employ some strategy to de-duplicate (or
triage) crashes, so as to map them to unique bugs. There are two
popular automated heuristics for doing this: using AFL’s notion of
coverage profile, and using stack hashes. In Table 1, these are marked
‘C’ (7 papers) and ‘S’ (7 papers) in the crash column. There are
four papers using other tools/methods for triage, marked ‘O’. For
example, VUzzer additionally used a tool called !Exploitable to
assess the exploitability of a crash caused by a bug [44]. Crashes
that have a low likelihood of being turned into an attack could be
discounted by a user, so showing that a fuzzer finds more danger-
ous bugs is advantageous. The de-duplication strategy used in our
experiments corresponds to ‘C’.

Unfortunately, as we show experimentally in this section, these
de-duplication heuristics are actually poor at clustering crashing
inputs according to their root cause.

Several papers do consider some form of ground truth. Six papers
use it as their main performance measure, marked ’G’ in the table.
By virtue of their choice of benchmark programs, they are able
to map crashing inputs to their root cause perfectly. Eight other
papers, marked ’G*’ in the table, make some effort to triage crashes
to identify their root cause, but do so imperfectly. Typically, such
triage is done as a ‘case study’ and is often neither well founded
nor complete—ground truth is not used as the overall (numeric)
performance measure.

In the next three subsections we discuss performance measures
in detail, showing why using heuristics rather than actual ground
truth to compare fuzzer performance can lead to misleading or
wrong conclusions. In lieu of measuring bugs directly, nearly half
of the papers we examined consider a fuzzer’s ability to execute
(“cover”) significant parts of a target program. This measurement
is potentially more generalizable than bug counts, but is not a
substitute for it; we discuss it at the end of the section.

7.1 Ground Truth: Bugs Found
The ultimate measure of a fuzzer is the number of distinct bugs
that it finds. If fuzzer A generally finds more bugs than baseline B
then we can view it as more effective. A key question is: What is a
(distinct) bug? This is a subjective question with no easy answer.

We imagine that a developer will ultimately use a crashing input
to debug and fix the target program so that the crash no longer
occurs. That fix will probably not be specific to the input, but will
generalize. For example, a bugfix might consist of a length check to
stop a buffer overrun from occurring—this will work for all inputs
that are too long. As a result, if target p crashes when given input
I , but no longer crashes when the bugfix is applied, then we can
associate I with the bug addressed by the fix [11]. Moreover, if
inputs I1 and I2 both induce a crash on p, but both no longer do so
once the bugfix is applied, we know that both identify the same bug
(assuming the fix is suitably “minimal” [26]).

When running on target programs with known bugs, we have di-
rect access to ground truth. Such programs might be older versions
with bugs that have since been fixed, or they might be synthetic pro-
grams or programs with synthetically introduced bugs. Considering
the former category, we are aware of no prior work that uses old



int main(int argc , char* argv []) {

if (argc >= 2) {

char b = argv [1][0];

if (b == 'a') crash ();

else crash ();

}

return 0;

}

Figure 5: How coverage-based deduplication can overcount

programs and their corresponding fixes to completely triage crashes
according to ground truth. In the latter category, nine papers use
synthetic suites in order to determine ground truth. The most popu-
lar suites are CGC (Cyber Grand Challenge) [14] and LAVA-M [16];
we discuss these more in the next section. For both, bugs have
been injected into the original programs in a way that triggering
a particular bug produces a telltale sign (like a particular error
message) before the program crashes. As such, it is immediately
apparent which bug is triggered by the fuzzer’s generated input.
If that bug was triggered before, the input can be discarded. Two
other papers used hand-selected programs with manually injected
vulnerabilities.

7.2 AFL Coverage Profile
When ground truth is not available, researchers commonly employ
heuristic methods de-duplicate crashing inputs. The approach taken
by AFL, and used by 7 papers in Table 1 (marked ’C’), is to consider
inputs that have the same code coverage profile as equivalent. AFL
will consider a crash “unique” if the edge coverage for that crash
either contains an edge not seen in any previous crash, or, is missing
an edge that is otherwise in all previously observed crashes.4

Classifying duplicate inputs based on coverage profile makes
sense: it seems plausible that two different bugs would have dif-
ferent coverage representations. On the other hand, it is easy to
imagine a single bug that can be triggered by runs with different
coverage profiles. For example, suppose the function crash in the
program in Figure 5 will segfault unconditionally. Though there is
but a single bug in the program, two classes of input will be treated
as distinct: those starting with an 'a' and those that do not.

Assessing against ground truth. How often does this happen in
practice? We examined the crashing inputs our fuzzing runs gen-
erated for cxxfilt using AFL and AFLFast. Years of development
activity have occurred on this code since the version we fuzzed
was released, so (most of) the bugs that our fuzzing found have
been patched. We used git to identify commits that change source
files used to compile cxxfilt. Then, we built every version of cxxfilt
for each of those commits. This produced 812 different versions of
cxxfilt. Then, we ran every crashing input (57,142 of them) on each

4AFL also provides a utility, afl-cmin, which can be run offline to “prune” a corpus
of inputs into a minimal corpus. Specifically, the afl-cmin algorithm keeps inputs that
contain edges not contained by any other inputs trace. This is different than the AFL
on-line algorithm, which also retains inputs missing edges that other inputs’ traces
have. Only one prior paper that we know of, Angora [10], ran afl-cmin on the final
set of inputs produced by AFL; the rest relied only on the on-line algorithm, as we do.

different version of cxxfilt, recording whether or not that version
crashed. If not, we consider the input to have been a manifestation
of a bug fixed by that program version.

To help ensure that our triaging results are trustworthy, we took
two additional steps. First, we ensured that non-crashing behavior
was not incidental. Memory errors and other bug categories uncov-
ered by fuzzing may not always cause a crash when triggered. For
example, an out-of-bounds array read will only crash the program
if unmapped memory is accessed. Thus it is possible that a commit
could change some aspect of the program that eliminates a crash
without actually fixing the bug. To address this issue, we compiled
each cxxfilt version with Address Sanitizer and Undefined Behavior
Sanitizer (ASAN and UBSAN) [48], which adds dynamic checks
for various errors including memory errors. We considered the
presence of an ASAN/UBSAN error report as a “crash.”

Second, we ensured that each bug-fixing commit corresponds to
a single bugfix, rather than several. To do so, we manually inspected
every commit that converted a crashing input to a non-crashing
one, judging whether we believed multiple distinct bugs were being
fixed (based on principles we developed previously [26]). If so, we
manually split the commit into smaller ones, one per fix. In our
experiments, we only had to do this once, to a commit that imported
a batch of changes from the libiberty fork of cxxfilt into the main
trunk.5 We looked at the individual libiberty commits that made
up this batch to help us determine how to split it up. Ultimately we
broke it into five distinct bug-fixing commits.

Our final methodology produced 9 distinct bug-fixing commits,
leaving a small number of inputs that still crash the current version
of cxxfilt. Figure 6 organizes these results. Each bar in the graph
represents a 24-hour fuzzing trial carried out by either AFL or
AFLFast.6 For each of these, the magnitude of the bar on the y
axis is the total number of “unique” (according to coverage profile)
crash-inducing inputs, while the bar is segmented by which of these
inputs is grouped with a bug fix discovered by our ground truth
analysis. Above each bar is the total number of bugs discovered by
that run (which is the number of compartments in each bar). The
runs are ordered by the number of unique bugs found in the run.

We can see that there is at best a weak correlation between the
number of bugs found during a run and the number of crashing
inputs found in a run. Such a correlation would imply a stronger
upward trend of crash counts whenmoving left to right.We can also
see that AFLFast generally found many more “unique” crashing
inputs than AFL but the number of bugs found per run is only
slightly higher. Mann Whitney finds that the difference in crashes
is statistically significant, with a p-value of 10−10, but the difference
in bugs is not (but is close)—the p-value is 0.066.

Discussion. Despite the stepswe took to ensure our triagematches
ground truth, we may still have inflated or reduced actual bug
counts. As an example of the former, we note that ASAN/UBSAN
is not guaranteed to catch all memory safety violations, so we may
have attributed an incidental change to a bugfix. We found a few
cases where we couldn’t explain why a commit fixed a crash, and
so did not associate the commit with a bug. On the other hand, we

5https://github.com/gcc-mirror/gcc/tree/master/libiberty
6We show each trial’s data individually, rather than collecting it all together, because
AFL’s coverage-based metric was applied to each trial run, not all runs together.

https://github.com/gcc-mirror/gcc/tree/master/libiberty


5

5 6

6

6
7

6 7

7

6

6

7
6

6
7

7

6

6

8

5

5

5

65

6

5 8
6

6

6

0

500

1000

1500

C
o

u
n

t 
o

f 
cr

a
sh

e
s

AFL

8

7

6

7

6

7

5

7

5

8

6
6

6

76

6

8

7

7

6

6

8

6

7

6

6

76 6

6

AFLfast

Figure 6: Crashes with unique bugs found per run for cxxfilt. Each bar represents an independent run of either AFL or AFLfast.
The height of the bar is the count of crashing inputs discovered during that run. Each bar is divided by color, clustering inputs
with other inputs that share the same root cause. Number of unique bugs is indicated above each bar.

might have failed to differentiate multiple bugfixes in a single com-
mit, either by mistake or in the eyes of an observer whose judgment
differs from our own. In any case, the magnitude of the difference
between our counts and “unique crashes” means that the top-level
result—that “unique crashes” massively overcount the number of
true bugs—would hold even if the counts changed a little.

Had we used ground truth measure in all of our experiments, it
might have changed the character of the results in Sections 4–6. For
example, the performance variations within a configuration due
to randomness (e.g., Figure 2) may not be as stark when counting
bugs rather than “unique” crashing inputs. In this case, our advice
of carrying out multiple trials is even more important, as small
performance differences between fuzzers A and B may require
many trials to discern. It may be that performance differences due
to varying a seed (Figure 3) may also not be as stark—this would
be true if one seed found hundreds of crashes and another found
far fewer, but in the end all crashes corresponded to the same bug.
There may also be less performance variation over time when bugs,
rather than crashes, are counted (Figure 4). On the other hand, it is
also possible that we would find more variation over time, and/or
with different seeds, rather than less. In either case, we believe our
results in Sections 4–6 raise sufficient concern that our advice to test
with longer timeouts and a variety of seeds (including the empty
seed) should be followed unless and until experimental results with
ground truth data shed more light on the situation.

7.3 Stack hashes
Another common, heuristic de-duplication technique is stack hash-
ing [36]. Seven papers we considered use this technique (marked
’S’ in Table 1). The idea is the following. Suppose that our buffer

overrun bug is in a function deep inside a larger program, e.g., in a
library routine. Assuming that the overrun induces a segfault imme-
diately, the crash will always occur at the same place in the program.
More generally, the crash might depend on some additional pro-
gram context; e.g., the overrun buffer might only be undersized
when it is created in a particular calling function. In that case, we
might look at the call stack, and not just the program counter, to
map a crash to a particular bug. To ignore spurious variation, we
focus on return addresses normalized to their source code location.
Since the part of the stack closest to the top is perhaps the most
relevant, we might only associate the most recent N stack frames
with the triggering of a particular bug. (N is often chosen to be be-
tween 3 and 5.) These frames could be hashed for quick comparison
to prior bugs—a stack hash.

Stack hashing will work as long as relevant context is unique,
and still on-stack at the time of crash. But it is easy to see situations
where this does not hold—stack hashing can end up both under-
counting or overcounting true bugs. Consider the code in Figure 7,
which has a bug in the format function that corrupts a string s,
which ultimately causes the output function to crash (when s is
passed to it, innocently, by the prepare function). The format
function is called separately by functions f and g.

Suppose we fuzz this program and generate inputs that induce
two crashes, one starting with the call from f and the other starting
with the call from g. Setting N to the top 3 frames, the stack hash
will correctly recognize that these two inputs correspond to the
same bug, since only format, prepare and output will be on the
stack. Setting N to 5, however, would treat the inputs as distinct
crashes, since now one stack contains f and the other contains
g. On the other hand, suppose this program had another buggy



void f() { ... format(s1); ... }

void g() { ... format(s2); ... }

void format(char *s) {

//bug: corrupt s

prepare(s);

}

void prepare(char *s) {

output(s);

}

void output(char *s) {

// failure manifests

}

Figure 7: How stack hashing can over- and undercount bugs

Table 3: Stack hashing results for cxxfilt. The first column
specifies the label we assign based testing progressive ver-
sions of cxxfilt. The second column specifies the number
of distinct stack hashes among the inputs assigned to the
ground truth label. The third column counts how many of
the stack hashes from the second column appear only with
those inputs grouped by the label in the first column, while
the fourth column counts howmany stack hashes appear in
other labels. The final column counts the number of distinct
inputs in a label.

Bug # Hashes Matches False Matches Input count

A 9 2 7 228
B 362 343 19 31,103
C 24 21 3 106
D 159 119 40 12,672
E 15 4 11 12,118
F 15 1 14 232
G 2 0 2 2
H 1 1 0 568
I 4 4 0 10
unfixed 28 12 16 98
unknown 4 0 4 4

function that also corrupts s prior to passing it to prepare. Setting
N to 2 would improperly conflate crashes due to that bug and ones
due the buggy format, since only the last two functions on the
stack would be considered.

Assessing against ground truth. We measured the effectiveness of
stack hashing by comparing its determinations against the labels for
bugs that we identified in the prior experiment. Our implementation
of stack hashing uses Address Sanitizer to produce a stack trace for
each crashing input to cxxfilt, and chooses N as the top 3 entries
on the stack for hashing.

Our analysis discovered that stack hashing is far more effective
at deduplicating inputs than coverage profiles, but would still over-
count the number of bugs discovered. Table 3 shows the results
of the comparison of stack hashing to the labels we identified.
As an example, consider label B, which represents 31,103 inputs

(column 5). Of those inputs, 362 distinct stack hashes were produced
(column 2). If the stack hash metric was the only knowledge we had
about the distribution of bugs in cxxfilt, we would claim to have
discovered two orders of magnitude more bugs than we actually
did. On the other hand, stack hashing seems to do very well for
label L: one hash matched all 568 inputs. In sum, across all runs, 595
hashes corresponded to 9 bugs, an inflation of 66×, as compared
to 57,044 coverage profile-unique inputs for 9 bugs, an inflation
of 6339×.7 4 crashing inputs were each associated with their own
“fixing” commit, but whenwe inspected the respective code changes
we could not see why the changes should fix a crash. As such, we
have listed these inputs in Table 3 as “unknown.” ASAN/UBSAN
does not detect all possible undefined behaviors, so it may be that
a code or data layout change between compilations or some other
form of non-determinism is suppressing the crashing behavior. A
compiler bug is also a possibility. We are continuing to investigate.

While stack hashing does not overcount bugs nearly as much
as AFL coverage profiles, it has the serious problem that hashes
are not unique. For example, only 343 of those for label B matched
only inputs associated with B (column 3). The remaining 19 also
matched some other crashing input (column 4). As such, these other
inputs would be wrongly discarded if stack hashing had been used
for de-duplication. Indeed, for label G, there is no unique hash
(there is a 0 in column 3)—it only falsely matches. Overall, about
16% of hashes were non-unique.8 As such, stack hashing-based
deduplication would have discarded these bugs.

Discussion. Table 3 shows another interesting trend also evident,
but less precisely, in Figure 6. Some bugs are triggered by a very
small number of inputs, while others by a very large number. Bugs
G and I each correspond to only 2 or 10 inputs, while bugs B, D,
and E correspond to more than 10K inputs. Prior fuzzing studies
have found similar bug distributions [11]. While Table 3 combines
all inputs from all trials, considering each trial individually (as per
Figure 6) we find that no single run found all 9 bugs; all runs found
bugs B, D, E, but no run found more than 5 additional bugs.

An important open question is whether the trends we observe
here with cxxfilt hold for other target programs. To answer this
question would require more “ground truth” analysis of the flavor
we have carried out here. Assuming they do hold, we draw two ten-
tative conclusions. First, the trends reinforce the problem with bug
heuristics: in the presence of “rare” inputs, the difference between
finding 100 crashing inputs and 101 (an apparently insignificant
difference) could represent finding 1 or 2 unique bugs (a significant
one). Second, fuzzers might benefit from an algorithmic trick em-
ployed by SAT solvers: randomly “reboot” the search process [46]
by discarding some of the current state and starting again with the
initial seed, thus simulating the effect of running separate trials. The
challenge would be to figure out what fuzzer state to retain across
reboots so as to retain important knowledge but avoid getting stuck
in a local minimum.

7The table tabulates crashing inputs across all trials put together: if instead you consider
the stack hashes taken on a per-run basis (as in Figure 6), the results will be somewhat
different, but the overall trends should remain the same.
8This value was computed by summing the total distinct number of hashes that show
up in more than one row (a lower bound of the total in column 4) and dividing by the
total of distinct hashes overall (a lower bound of the total in column 2).



Related Work. Recent work by van Tonder et al. [51] also experi-
mentally assesses the efficacy of stack hashing and coverage profiles
against ground truth. Like us, they defined ground truth as single
conceptual bugs corrected by a particular code patch. They com-
pared howwell coverage profiles and stack hashes approximate this
ground truth. Like us, they found that both tended to overcount the
number of true bugs. As they consider different patches and target
programs, their study is complementary to ours. However, their set
of crashing inputs was generated via mutations to an initial known
crashing input, rather than via a normal fuzzing process. As such,
their numbers do not characterize the impact of poor deduplication
strategies in typical fuzzing use-cases, as ours do.

Pham et al. [42] also studied how stack hashes, forN = 1 andN =
∞, can over- and under-count bugs identified through symbolic
execution. Their interest was a comparison against their own de-
duplication technique, and so their study did not comprehensively
consider ground truth.

7.4 Code Coverage
Fuzzers are run to find bugs in programs. A fuzzer that runs for a
long period of time and finds no bugs would be seen as unsuccessful
by its user. It seems logical to evaluate a fuzzer based on the number
of bugs that fuzzer finds. However, just because a fuzzer does not
find a bug may not tell us the whole story about the fuzzer’s efficacy.
Perhaps its algorithm is sound but there are few or no bugs to find,
and the fuzzer has merely gotten unlucky.

One solution is to instead (or also) measure the improvement in
code coverage made by fuzzer A over baseline B. Greybox fuzzers
already aim to optimize coverage as part of the isInteresting
function, so surely showing an improved code coverage would
indicate an improvement in fuzzing. This makes sense. To find a
crash at a particular point in the program, that point in the program
would need to execute. Prior studies of test suite effectiveness also
suggest that higher coverage correlates with bug finding effective-
ness [19, 30]. Nearly half of the papers we considered measured
code coverage; FairFuzz only evaluated performance using code
(branch) coverage [32].

However, there is no fundamental reason that maximizing code
coverage is directly connected to finding bugs. While the general
efficacy of coverage-guided fuzzers over black box ones implies
that there’s a strong correlation, particular algorithms may eschew
higher coverage to focus on other signs that a bug may be present.
For example, AFLGo [5] does not aim to increase coverage globally,
but rather aims to focus on particular, possibly error-prone points
in the program. Even if we assume that coverage and bug finding
are correlated, that correlation may be weak [28]. As such, a sub-
stantial improvement in coverage may yield merely a negligible
improvement in bug finding effectiveness.

In short, we believe that code coverage makes sense as a sec-
ondary measure, but that ground truth, according to bugs discov-
ered, should always be primary.

8 TARGET PROGRAMS
We would like to establish that one fuzzing algorithm is generally
better than another, i.e., in its ability to find bugs in any target
program drawn from a (large) population. Claims of generality

are usually made by testing the fuzzer on a benchmark suite that
purports to represent the population. The idea is that good perfor-
mance on the suite should translate to good performance on the
population. How should we choose such a benchmark suite?

Recent published works have considered a wide variety of bench-
mark programs. Broadly, these fall into two categories, as shown
in the second column in Table 1: real programs and artificial pro-
grams (or bugs). Examples of the former include the Google fuzzer
test suite (“G”) [18] and ad hoc selections of real programs (“R”).
The latter comprises CGC (“C”) [14], LAVA-M (“L”) [16], and hand-
selected programs with synthetically injected bugs (“S”). Some pa-
pers’ benchmarks drew from both categories (e.g., VUzzer [44] and
Steelix [33]). As we discuss below, no existing benchmark choice
is entirely satisfying, thus leaving open the important question of
developing a good fuzzing benchmark.

8.1 Real programs
According to Table 1, nearly all papers used some real-world pro-
grams in their evaluations. Two of these papers [49, 56] used the
Google Fuzzer Test suite [18], a set of real-world programs and
libraries coupled with harnesses to focus fuzzing on a set of known
bugs. The others evaluated on a hand selected set of real-world
programs.

We see two problems with the way that real programs have
been used as fuzzing targets. First, most papers consider only a
small number of target programs without clear justification of
their representativeness. The median number of programs, per
Table 1, is seven. Sometimes a small count is justified; e.g., IMF
was designed specifically to fuzz OS kernels, so its evaluation on
a single “program,” the MacOS kernel, is still interesting. On the
other hand, most fuzzers aim to apply to a larger population (e.g.,
all file processing programs), so 7 would seem to be a small number.
A positive outlier was FuzzSim, which used a large set of programs
(more than 100) and explained the methodology for collecting them.

As evidence of the threat posed by a small number of insuffi-
ciently general targets, consider the experimental results reported
in Figure 2, which match the results of Böhme et al [6]. The first row
of the figure shows results for nm, objdump and cxxfilt, which were
the three programs in which Böhme et al found crashes.9 Focusing
our attention on these programs suggests that AFLFast is uniformly
superior to AFL in crash finding ability. However, if we look at the
second row of the figure, the story is not as clear. For both FFmpeg
and gif2png, two programs used in other fuzzing evaluations, the
Mann Whitney U test shows no statistical difference between AFL
and AFLFast. Including these programs in our assessment weakens
any claim that AFLFast is an improvement over AFL.

The second problem we see with the use of real programs to date
is that few papers use the same targets, at the same versions. As
such, it is hard to make even informal comparisons across different
papers. One overlapping set of targets were binutils programs, used
in several evaluations [5, 6, 10, 32]. Multiple papers also considered
FFmpeg and gif2png [9, 44, 45, 55, 58]. However, none used the

9Figure 6 of their paper presents a similar series of plots. The differences in their
plots and ours are the following: they plot the results on log scale for the Y axis; they
consider six-hour trials rather than 24-hour trials; and they do not plot median and
confidence intervals computed over 30+ runs, but rather plot the mean of 8 runs. They
also use different versions of AFL and AFLFast.



same versions. For example, the versions of binutils were different
in these papers: AFLFast [6] and AFLGo [5] used 2.26; FairFuzz [32]
used 2.28; Angora [10] used 2.29.

The use of Google Fuzzer Suite would seem to address both is-
sues: it comprises 25 programs with known bugs, and is defined
independently of any given fuzzer. On the other hand, it was de-
signed as a kind of regression suite, not necessarily representative
of fuzzing “in the wild;” the provided harnesses and seeds mostly in-
tend that fuzzers should find the targeted bugs within a few seconds
to a few minutes.

8.2 Suites of artificial programs (or bugs)
Real programs are fickle in that the likelihood that bugs are present
depends on many factors. For example, programs under active
development maywell have more bugs than those that are relatively
stable (just responding to bug reports). In a sense, we do not care
about any particular set of programs, but rather a representative set
of programming (anti)patterns in which bugs are likely to crop up.
Such patterns could be injected artificially. There are two popular
suites that do this: CGC, and LAVA-M.

The CGC suite comprises 296 buggy programs produced as part
of DARPA’s Cyber Grand Challenge [14]. This suite was specifi-
cally designed to evaluate bug finding tools like fuzz testers—the
suite’s programs perform realistic functions and are seeded with
exploitable bugs. LAVA (which stands for Large-scale Automated
Vulnerability Addition) is a tool for injecting bugs into known pro-
grams [16]. The tool is designed to add crashing, input-determinate
bugs along feasible paths. The LAVA authors used the tool to create
the LAVA-M suite, which comprises four bug-injected coreutils pro-
grams: base64, md5sum, uniq, and who. Unlike the CGC programs,
which have very few injected bugs, the LAVA-M programs have
many: on the order of a few dozen each for the first three, and more
than 2000 for who. For both suites, if a fuzzer triggers a bug, there
is a telltale sign indicating which one it is, which is very useful for
understanding how many bugs are found from the total possible.

CGC and LAVA-M have gained popularity as the benchmark
choices for evaluating fuzzers since their introduction. Within the
past two years, CGC and LAVA-M have been used for evaluating 4
and 5 fuzzers, respectively. VUzzer [44], Steelix [33], and T-Fuzz [39]
used both benchmarks in their evaluation. However, sometimes the
CGC benchmark was subset: Driller [50], VUzzer [44], and Steelix
[33] were evaluated on 126, 63, and 17 out of the 296 programs,
respectively.

While CGC programs are hand-designed to simulate reality, this
simulation may be imperfect: Performing well on the CGC pro-
grams may fail to generalize to actual programs. For example, the
average size of the CGC cqe-challenge programs was (only) 1774
lines of code, and many programs use telnet-style, text-based proto-
cols. Likewise, LAVA-M injected bugs may not sufficiently resemble
those found “in the wild.” The incentives and circumstances behind
real-world software development may fail to translate to synthetic
benchmarks which were specifically designed to be insecure. The
LAVA authors write that, “A significant chunk of future work for
LAVA involves making the generated corpora look more like the
bugs that are found in real programs.” Indeed, in recent experi-
ments [15], they also have shown that relatively simple techniques

can effectively find all of the LAVA-M bugs, which follow a simple
pattern. We are aware of no study that independently assesses the
extent to which these suites can be considered “real” or “general.”

8.3 Toward a Fuzzing Benchmark Suite
Our assessment leads us to believe that there is a real need for a
solid, independently defined benchmark suite, e.g., a DaCapo [4]
or SPEC10 for fuzz testing. This is a big enough task that we do
not presume to take it on in this paper. It should be a community
effort. That said, we do have some ideas about what the result of
that effort might look like.

First, we believe the suite should have a selection of programs
with clear indicators of when particular bugs are found, either
because bugs are synthetically introduced (as in LAVA-M and CGC)
or because they were previously discovered in older versions (as
in our ground truth assessment in Section 7.2). Clear knowledge
of ground truth avoids overcounting inputs that correspond to the
same bug, and allows for assessing a tool’s false positives and false
negatives. We lean toward using real programs with known bugs
simply because their ecological validity is more assured.

Second, the suite should be large enough (both in number of
programs, and those programs’ sizes) to represent the overall tar-
get population. How many programs is the right number? This is
an open question. CGC comprises ∼ 300 small programs; Google
Fuzzer Suite has 25; most papers used around 7. Our feeling is that
7 is too small, but it might depend on which 7 are chosen. Perhaps
25 is closer to the right number.

Finally, the testing methodology should build in some defense
against overfitting. If a static benchmark suite comes into common
use, tools may start to employ heuristics and strategies that are
not of fundamental advantage, but apply disproportionately to the
benchmark programs. One way to deal with this problem is to
have a fixed standard suite and an “evolvable” part that changes
relatively frequently. One way to support the latter is to set up a
fuzzing competition, similar to long-running series of SAT solving
competitions.11 One effort in this direction is Rode0day, a recur-
ring bug finding competition.12 Since the target programs would
not be known to fuzzing researchers in advance, they should be
incentivized to develop general, reusable techniques. Each compe-
tition’s suite could be rolled into the static benchmark, at least in
part, to make the suite even more robust. One challenge is to regu-
larly develop new targets that are ecologically valid. For example,
Rode0day uses automated bug insertion techniques to which a tool
could overfit (the issue discussed above for LAVA).

9 CONCLUSIONS AND FUTUREWORK
Fuzz testing is a promising technology that has been used to uncover
many important bugs and security vulnerabilities. This promise
has prompted a growing number of researchers to develop new
fuzz testing algorithms. The evidence that such algorithms work
is primarily experimental, so it is important that it comes from a
well-founded experimental methodology. In particular, a researcher
should run their algorithm A on a general set of target programs,

10https://www.spec.org/benchmarks.html
11http://www.satcompetition.org/
12https://rode0day.mit.edu/

https://www.spec.org/benchmarks.html
http://www.satcompetition.org/
https://rode0day.mit.edu/


using a meaningful set of configuration parameters, including the
set of input seeds and duration (timeout), and compare against
the performance of a baseline algorithm B run under the same
conditions, where performance is defined as the number of (distinct)
bugs found. A and B must be run enough times that the inherent
randomness of fuzzing is accounted for and performance can be
judged via a statistical test.

In this paper, we surveyed 32 recent papers and analyzed their
experimental methodologies. We found that no paper completely
follows the methodology we have outlined above. Moreover, results
of experiments we carried out using AFLFast [6] (as A) and AFL [1]
(as B) illustrate why not following this methodology can lead to
misleading or weakened conclusions. We found that

• Most papers failed to perform multiple runs, and those that did
failed to account for varying performance by using a statistical
test. This is a problem because our experiments showed that
run-to-run performance can vary substantially.
• Many papers measured fuzzer performance not by counting
distinct bugs, but instead by counting “unique crashes” using
heuristics such as AFL’s coverage measure and stack hashes.
This is a problem because experiments we carried out showed
that the heuristics can dramatically over-count the number
of bugs, and indeed may suppress bugs by wrongly grouping
crashing inputs. This means that apparent improvements may
be modest or illusory. Many papers made some consideration
of root causes, but often as a “case study” rather than a perfor-
mance assessment.
• Many papers used short timeouts, without justification. Our
experiments showed that longer timeouts may be needed to
paint a complete picture of an algorithm’s performance.
• Many papers did not carefully consider the impact of seed
choices on algorithmic improvements. Our experiments showed
that performance can vary substantially depending on what
seeds are used. In particular, two different non-empty inputs
need not produce similar performance, and the empty seed can
work better than one might expect.
• Papers varied widely on their choice of target programs. A
growing number are using synthetic suites CGC and/or LAVA-
M, which have the advantage that they are defined indepen-
dently of a given algorithm, and bugs found by fuzzing them
can be reliably counted (no crash de-duplication strategy is
needed). Other papers often picked small, disjoint sets of pro-
grams, making it difficult to compare results across papers. Our
experiments showed AFLFast performs well on the targets it
was originally assessed against, but performed no better than
AFL on two targets used by other papers.

Ultimately, our experiments roughly matched the positive results
of the original AFLFast paper [6], but by expanding the scope of
the evaluation to different seeds, longer timeouts, and different
target programs, evidence of AFLFast’s superiority, at least for the
versions we tested, was weakened. The fact that heuristic crash de-
duplication strategies are of questionable value further weakens our
confidence in claims of improvement. We believe the same could
be said of many prior papers—all suffer from problems in their
evaluation to some degree. As such, a key conclusion of this paper

is that the fuzzing community needs to start carrying out more
rigorous experiments in order to draw more reliable conclusions.

Specifically, we recommend that fuzz testing evaluations should
have the following elements:
• multiple trials with statistical tests to distinguish distributions;
• a range of benchmark target programs with known bugs (e.g.,
LAVA-M, CGC, or old programs with bug fixes);
• measurement of performance in terms of known bugs, rather
than heuristics based on AFL coverage profiles or stack hashes;
block or edge coverage can be used as a secondary measure;
• a consideration of various (well documented) seed choices in-
cluding empty seed;
• timeouts of at least 24 hours, or else justification for less, with
performance plotted over time.
We see (at least) three important lines of future work. First, we

believe there is a pressing need for well-designed, well-assessed
benchmark suite, as described at the end of the last section. Second,
and related, it would be worthwhile to carry out a larger study of
the value of crash de-duplication methods on the results of realistic
fuzzing runs, and potentially develop newmethods that work better,
for assisting with triage and assessing fuzzing when ground truth is
not known. Recent work shows promise [42, 51]. Finally, it would
be interesting to explore enhancements to the fuzzing algorithm
inspired by the observation that no single fuzzing run found all
true bugs in cxxfilt; ideas from other search algorithms, like SAT
solving “reboots” [46], might be brought to bear.

Acknowledgments. We thank Marcel Böhme and Abhik Roy-
choudhury for their help with AFLFast. We thank the anonymous
reviewers, Michelle Mazurek, Cornelius Aschermann, Luis Pina,
Jeff Foster, Ian Sweet, the participants of the ISSISP’18 summer
school, and our shepherd Mathias Payer for helpful comments and
suggestions on drafts of this work. This research was supported in
part by the National Science Foundation grants CNS-1563722 and
CNS-1314857, and DARPA under contracts FA8750-15-2-0104 and
FA8750-16-C-0022, and a Google Research Award.

REFERENCES
[1] AFL 2018. American Fuzzing Lop (AFL). http://lcamtuf.coredump.cx/afl/.
[2] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical

Tests to Assess Randomized Algorithms in Software Engineering. In International
Conference on Software Engineering (ICSE).

[3] BFF 2018. CERT Basic Fuzzing Framework (BFF). https://github.com/CERTCC/
certfuzz.

[4] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA).

[5] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS).

[7] Guillaume Calmettes, Gordon B. Drummond, and Sarah L. Vowler. 2012. Making
due with what we have: use your bootstraps. Journal of Physiology 590, 15 (2012).

[8] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In IEEE Symposium on Security and Privacy
(S&P).

[9] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In IEEE Symposium on Security and Privacy (S&P).

http://lcamtuf.coredump.cx/afl/
https://github.com/CERTCC/certfuzz
https://github.com/CERTCC/certfuzz


[10] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In IEEE Symposium on Security and Privacy (S&P).

[11] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming Compiler Fuzzers. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).

[12] ConfIntv 2018. Confidence Intervals for a Median. http://www.ucl.ac.uk/
ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/
confidence_interval_single_median.

[13] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware
Fuzzing for Kernel Drivers. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS).

[14] DARPA CGC 2018. Darpa Cyber Grand Challenge (CGC) Binaries. https://github.
com/CyberGrandChallenge/.

[15] Brendan Dolan-Gavitt. 2018. Of Bugs and Baselines. http://moyix.blogspot.com/
2018/03/of-bugs-and-baselines.html.

[16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
William K. Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-
Scale Automated Vulnerability Addition. In IEEE Symposium on Security and
Privacy (S&P).

[17] Gordon B. Drummond and Sarah L. Vowler. 2012. Different tests for a difference:
how do we research? British Journal of Pharmacology 165, 5 (2012).

[18] FuzzerTestSuite 2018. Fuzzer Test Suite. https://github.com/google/
fuzzer-test-suite.

[19] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite
Evaluation by Developers. In International Conference on Software Engineering
(ICSE).

[20] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: an automatic
random fuzzer for common file formats. In International Symposium on Haskell.

[21] Gustavo Grieco, Martn Ceresa, Agustn Mista, and Pablo Buiras. 2017. QuickFuzz
Testing for Fun and Profit. J. Syst. Softw. (2017).

[22] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
USENIX Security Symposium.

[23] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[24] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik Shin.
2018. Enhancing Memory Error Detection for Large-Scale Applications and Fuzz
Testing. In Network and Distributed System Security Symposium (NDSS).

[25] Andrew Henderson, Heng Yin, Guang Jin, Hao Han, and Hongmei Deng. 2017.
VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices. In Research in
Attacks, Intrusions, and Defenses (RAID).

[26] Michael Hicks. 2015. What is a bug? http://www.pl-enthusiast.net/2015/09/08/
what-is-a-bug/.

[27] Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina Nita-
Rotaru. 2017. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Cus-
tomizations. In IEEE International Symposium on Software Reliability Engineering
(ISSRE).

[28] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In International Conference on Software Engineering
(ICSE).

[29] Ulf Kargén and Nahid Shahmehri. 2015. Turning Programs Against Each Other:
High Coverage Fuzz-testing Using Binary-code Mutation and Dynamic Slicing.
In Foundations of Software Engineering (FSE).

[30] P. S. Kochhar, F. Thung, andD. Lo. 2015. Code coverage and test suite effectiveness:
Empirical study with real bugs in large systems. In IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER).

[31] lcamtuf. 2018. AFL quick start guide. http://lcamtuf.coredump.cx/afl/
QuickStartGuide.txt.

[32] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. IEEE/ACM International
Conference on Automated Software Engineering.

[33] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Foundations
of Software Engineering (FSE).

[34] libFuzzer 2018. libFuzzer. https://llvm.org/docs/LibFuzzer.html.
[35] Ying-Dar Lin, Feng-Ze Liao, Shih-KunHuang, and Yuan-Cheng Lai. 2015. Browser

fuzzing by scheduled mutation and generation of document object models. In
International Carnahan Conference on Security Technology.

[36] David Molnar, Xue Cong Li, and David A. Wagner. 2009. Dynamic Test Gener-
ation to Find Integer Bugs in x86 Binary Linux Programs. In USENIX Security
Symposium.

[37] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing Wrong Data Without Doing Anything Obviously Wrong!. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[38] R. Lyman Ott and Micheal T. Longnecker. 2006. Introduction to Statistical Methods
and Data Analysis (with CD-ROM).

[39] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In IEEE Symposium on Security and Privacy (S&P).

[40] Theofilos Petsios, Adrian Tang, Salvatore J. Stolfo, Angelos D. Keromytis, and
Suman Jana. 2017. NEZHA: Efficient Domain-Independent Differential Testing.
In IEEE Symposium on Security and Privacy (S&P).

[41] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[42] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury. 2017.
Bucketing Failing Tests via Symbolic Analysis. In International Conference on
Fundeamental Approaches to Software Engineering (FASE).

[43] Radamsa 2018. Radamsa. https://github.com/aoh/radamsa.
[44] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and

Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In NDSS.
[45] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security Symposium.

[46] Vadim Ryvchin and Ofer Strichman. 2008. Local Restarts. In International Con-
ference on Theory and Applications of Satisfiability Testing (SAT).

[47] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium.

[48] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.. In USENIX
Annual Technical Conference.

[49] Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian
Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and Anja Feldmann.
2017. Static Program Analysis as a Fuzzing Aid. In Research in Attacks, Intrusions,
and Defenses (RAID).

[50] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
Network and Distributed System Security Symposium (NDSS).

[51] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. 2018. Semantic Crash
Bucketing. In IEEE International Conference on Automated Software Engineering
(ASE).

[52] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000).

[53] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In IEEE Symposium on Security and Privacy (S&P).

[54] Weiguang Wang, Hao Sun, and Qingkai Zeng. 2016. SeededFuzz: Selecting and
Generating Seeds for Directed Fuzzing. In International Symposium on Theoretical
Aspects of Software Engineering (TASE).

[55] MaverickWoo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013. Sched-
uling Black-box Mutational Fuzzing. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[56] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[57] Hyunguk Yoo and Taeshik Shon. 2016. Grammar-based adaptive fuzzing: Evalua-
tion on SCADA modbus protocol. In IEEE International Conference on Smart Grid
Communications.

[58] Bin Zhang, Jiaxi Ye, Chao Feng, and Chaojing Tang. 2017. S2F: Discover Hard-to-
Reach Vulnerabilities by Semi-Symbolic Fuzz Testing. In International Conference
on Computational Intelligence and Security.

[59] L. Zhang and V. L. L. Thing. 2017. A hybrid symbolic execution assisted fuzzing
method. In IEEE Region 10 Conference (TENCON).

[60] Zzuf 2018. Zzuf. http://caca.zoy.org/wiki/zzuf.

http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/
http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/
http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt
http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt
https://llvm.org/docs/LibFuzzer.html
https://github.com/aoh/radamsa
http://caca.zoy.org/wiki/zzuf

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing Procedure
	2.2 Recent Advances in Fuzzing

	3 Overview and Experimental Setup
	4 Statistically Sound Comparisons
	5 Seed Selection
	6 Timeouts
	7 Performance Measures
	7.1 Ground Truth: Bugs Found
	7.2 AFL Coverage Profile
	7.3 Stack hashes
	7.4 Code Coverage

	8 Target Programs
	8.1 Real programs
	8.2 Suites of artificial programs (or bugs)
	8.3 Toward a Fuzzing Benchmark Suite

	9 Conclusions and Future Work
	References

