
HAL Id: hal-01192770
https://hal-upec-upem.archives-ouvertes.fr/hal-01192770

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time H264/AVC encoder based on enhanced frame
level parallelism for smart multicore DSP camera

Nejmeddine Bahri, Nidhameddine Belhadj, Thierry Grandpierre, Mohamed
Ali Ben Ayed, Nouri Masmoudi, Mohamed Akil

To cite this version:
Nejmeddine Bahri, Nidhameddine Belhadj, Thierry Grandpierre, Mohamed Ali Ben Ayed, Nouri Mas-
moudi, et al.. Real-time H264/AVC encoder based on enhanced frame level parallelism for smart mul-
ticore DSP camera. Journal of Real-Time Image Processing, Springer Verlag, 2014, 12, pp.791-812.
�10.1007/s11554-014-0470-6�. �hal-01192770�

https://hal-upec-upem.archives-ouvertes.fr/hal-01192770
https://hal.archives-ouvertes.fr

Real-time H264/AVC Encoder based on Enhanced
Frame Level Parallelism for Smart Multicore DSP
Camera

Nejmeddine Bahri(1), Nidhameddine Belhadj(1), Thierry Grandpierre(2), Mohamed Ali Ben Ayed(1), Nouri

Masmoudi(1), Mohamed Akil(2)
(1)National school of Engineers, LETI Laboratory, University of Sfax, Tunisia

(2)ESIEE Engineering, LIGM Laboratory, University Paris-EST, France

nejmeddine.bahri@gmail.com, Thierry.grandpierre@esiee.fr, nouri.masmoudi@enis.rnu.tn, mohamed.akil@esiee.fr

Abstract The latest generation of multicore Digital

Signal Processors (DSP), their high computing power,

low consumption and integrated peripherals will allow

them to be embedded in the next generation of smart

camera. Such DSPs allow designers to evolve the vision

landscape and simplify the developer's tasks to run more

complex image and video processing applications

without the need to burden a separate Personal Computer

(PC). This paper explains how exploiting the computing

power of a multicore DSP TMS320C6472 in order to

implement a real-time H264/AVC video encoder. This

work prepares the way to the implementation of the new

High Efficiency Video Coding standard (HEVC-H265).

To improve encoding speed, the enhanced Frame Level

Parallelism (FLP) approach is presented and

implemented. A real-time fully functional video demo is

given taken into account video capture and bitstream

storage. Experimental results show how we efficiently

exploit the potentials and the features of the multicore

platform without inducing PSNR degradation or bitrate

increase. The enhanced FLP using five DSP cores

achieves a speedup factor of 4.3 times in average

compared to a mono-core processor implementation for

Common Intermediate Format (CIF 352x288), Standard

Definition (SD 720x480) and High Definition (HD

1280x720) resolutions. This optimized implementation

allows us to exceed the real-time by reaching an

encoding speed of 98 f/s (frame/second) and 32 f/s for

CIF and SD resolutions respectively and saves up to 77%

of encoding time for the HD resolution.

Keywords H264/AVC encoder, DSP, multi-core, Frame

Level Parallelism, real-time.

1 Introduction

Nowadays, smart cameras or machine vision solutions

[1], [2] need to run complex image and video processing

applications on growing amounts of data while meeting

hard real-time constraints. New technologies of

programmable processors such multicore DSPs,

embedded heterogeneous systems (ARM-DSP [3], DSP-

FPGA, ARM-FPGA), offer a very promising solution for

these applications that require high computing

performances. They are characterized by a high

processing frequency with low power consumption

compared to General Purpose Processor (GPP) or

Graphic Processor Unit (GPU). Several manufactures [4]

such as Freescale [5] and Texas Instruments (TI) [6]

solve the challenges of smart cameras with their high

performance multicore DSP processors. Exploiting these

embedded technologies, smart cameras are changing the

vision landscape and pushing developers to run several

applications without the need to use any connected PC.

In the area of video application, compression represents

an interesting task among the main applications of smart

camera or machine vision in addition to other tasks such

object detection, tracking, recognition…etc. The

commercialized encoding IPs allow real-time

performance but lack in flexibility. In fact, they cannot

be upgraded to follow the latest protocol enhancements

and the latest advances in video compression. Actually, a

new video coding standard is appeared on the market

which is the HEVC-H265 but in the side, there are

several smart cameras still work until now with old video

coding standard as motion JPEG or MPEG4. So it is time

now to follow developments in this field.

DSPs offer software flexibility that is important to

allow upgradability. They allow us to build highly

flexible and scalable cameras that can follow the latest

advances in video compression. Encoder parameters can

also be finely tuned depending on the application's

requirements. They are also characterized by relatively

low software development cost and time-to-market

reduction compared to ASIC development or FPGA

implementation that requires a tremendous VHDL

expertise which may not deal with time-to-market

constraint.

In this context, the TI’s high performance multicore

DSP processor TMS320C6472 is used in order to

achieve a real-time implementation for the H264/AVC

[7] video encoder. This work will be our start point for

the new video standard HEVC [8]. Effectively; since

HEVC encoder keeps the majority of H264/AVC

features (GOPs, frames, and slices structures) our

proposed approach will also benefit for our future H265

implementation.

H264 encoder is characterized by high coding

efficiency comparing with previous standards. However,

this efficiency is accompanied by a high computational

complexity that requires a high-performance processing

capability to satisfy real-time constraint (25 to 30 f/s).

mailto:nejmeddine.bahri@gmail.com
mailto:Thierry.grandpierre@esiee.fr
mailto:nouri.masmoudi@enis.rnu.tn
mailto:mohamed.akil@esiee.fr

2

When moving to high resolutions, encoding time is

drastically increased. Frequency limitation of embedded

mono-core processor makes it hard to achieve real-time

encoding especially for HD resolutions. Using parallel

and multicore architectures will be crucial to reduce the

processing time of H264/AVC encoder.

Several works have been published exploiting the

potential parallelism of H264/AVC standard by applying

a functional partitioning algorithms, data partitioning

algorithms or both. Multi-processor, multi-core, multi-

threading encoding system and parallel algorithms have

been discussed in many papers [9] to [27]. This paper

presents the Frame Level Parallelism (FLP) approach and

describes its complete implementation in a H.264/AVC

encoder using a multicore DSP TMS320C6472.

The remainder of this paper is organized as follows:

next section provides an overview of data dependencies

and parallelism in H.264/AVC standard. Section 3 details

the related works on the parallel implementations of

H264/AVC encoder. The internal architecture of our

multicore DSP TMS320C6472 is described in Sect.4.

Section 5 presents our optimized implementation of

H264 encoder on a single DSP core. Section 6 focuses on

the FLP algorithm implementation on five DSP cores. It

details the whole coding chain (image capture, bitstream

transfers), and finally gives experimental results. The

best approach, based on the enhanced FLP is detailed in

Sect.7 which also includes experimental results. Finally,

section 8 concludes this paper and presents some

perspectives.

2 Overview of data dependencies and parallelism in

H264/AVC encoder

The H.264/AVC encoder baseline profile is a video

compression standard used to reduce the video data

amount in order to overcome the limitation of

transmission bandwidth and the huge amount of memory

requirement for storing high definition video sequences.

This standard consists of several functions in order to

generate the compressed bitstream of the input video as

shown in Fig.1.

Intra

Prediction

Motion

Estimation

Motion

Compensation
Deblocking

filter

Ref1

Ref2

Ref3

Integer

Transform
Quantification

Inverse

Transform

Inverse

Quantification

Entropy

coder
+

+

Input video

intra

inter

-

Reconstructed

Frame

Bitstream

Fig. 1 H264/AVC video encoder strucure

This standard divides a video sequence into a hierarchical

structure with six levels as shown in Fig. 2. The top level

of this structure is the sequence that contains one or more

groups of pictures (GOP). Each GOP is composed of one

or more frames. Finally, the frames are divided into one

or more independent slices, subdivided themselves into

macroblocks of 16x16 pixels (MB) and blocks of 4x4

pixels. Each MB undergoes two prediction types: 1) intra

prediction: it consists of performing intra16x16 and

intra4x4 prediction modes in order to reduce spatial

redundancies in the current frame. 2) inter prediction: it

consists of determining the motion vector of the current

MB relative to its position in the reference frames. It

includes 7 prediction modes in order to reduce temporal

redundancies existed among successive frames. A mode

decision is then performed to select the best prediction

mode. Integer transform and quantification modules are

performed on the best predicted MB in order to keep only

the most significant coefficients. An entropy coding is

finally performed to generate the compressed bitstream.

A decoding chain is included in the encoder structure in

order to keep the reconstructed frame that will be filtered

with a de-blocking filter in order to eliminate artifacts.

The reconstructed frame will be used as a reference for

the next frames to perform motion estimation.

GOP

Frame

Slice

MB

Block

Fig. 2 Hierarchical decomposition of an H.264 video sequence

According to functions organization and hierarchical

sequence structure in H.264/AVC encoder, there are

mainly two partitioning families:

Task-level parallelization (TLP) or functional

partitioning: it consists of splitting the encoder into

several steps, identify them into a different group of tasks

equal to the number of threads available on the system

and run these groups of tasks simultaneously as a

pipeline. Thus, the appropriate functions that could be

grouped together to be processed in parallel and the other

functions that will be executed in serial to respect data

dependencies should be efficiently chosen. Also, tasks

computational complexities should be taken into

consideration in order to maximize the encoding gain and

ensure a workload balance between the parallel tasks.

Finally, when grouping functions, synchronization

overhead should be minimized as much as possible by

eliminating data dependency between the different

function blocks. For example intra prediction modes (13

3

modes) and inter prediction modes (7 modes) could be

processed in parallel because no dependencies existed

among them. In the other side, integer transform,

quantification and entropy coding have to be processed in

serial way given the dependencies among them.

Data-level parallelization (DLP) or data partitioning:

it exploits the hierarchical data structure of H264/AVC

encoder by simultaneously processing several data levels

on multiple processing units. DLP is limited by data

dependencies among different data units.

For H264/AVC encoder, there are two major types of

data dependencies:

Spatial dependencies: they exist amongst macroblocks

within the current encoding frame. In fact, to perform

intra prediction modes, motion vector prediction and

reconstructed MB filtering for the current MB, such data

are required from its neighboring MBs (Left, Top Left

TOP and Top right) already encoded as shown in Fig. 3.

So, the current MB could be encoded only if its

neighboring MBs have been encoded.

Current

 MB

LEFT

 MB

TOP pixels

dependency

TOP

right

L
E

F
T

 p
ix

e
ls

d
e

p
e

n
d

e
n

c
y

TOP

Left

TOP MBTOP LEFT

 MB

TOP right

MB

Fig. 3 spatial dependencies for the current MB

Temporal dependency: to determine the motion vector

of the current MB in relative to its position in the

previous encoded frames, a motion estimation (ME)

algorithm such as MB matching is performed. The search

of the corresponding MB is restricted in a specific area

called the "search window" in the reference frames (the

previous encoded frames) instead of scanning the whole

frame in order to reduce the computing complexity. So a

partial dependency among MBs of successive frames is

imposed and limited to the search windows.

As data partitioning is restricted by these data

dependencies, several points could be noticed. No

dependencies existed among different GOPs because

each GOP is started by an intra frame “I” where only

intra prediction is performed, so dependencies is existed

only among MBs in the same frame. The remaining

frame of the GOP are a predicted frames “P” where both

intra and inter prediction are performed. Hence, several

GOPs could be encoded in parallel. This method is called

GOP Level Parallelism [14]. A partial dependency is

existed between successive frames of the same GOP due

to motion estimation in the search window. Thus,

multiple frames could also be encoded in pipeline once

the search window is encoded and this method is called

Frame Level Parallelism [12]. When dividing frame into

independent slices, several slices could be processed in

parallel and this approach is called slice level parallelism

[13]. Finally, in the same frame, multiple MBs could be

encoded at the same time once its neighboring MBs are

already encoded. This scheme is called MB level

Parallelism [12].

3 Related works

To overcome the high complexity of H264/AVC encoder

and to resolve the problem of mono-core processor

frequency limitation, many researchers have been

worked on the parallelism of H264/AVC encoder in order

to meet the real-time constraint and achieve a good

encoding speedup which can be presented by the

following equation.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔
 (1)

 Several implementations exploiting multi-threads, multi-

processors and multicore architectures are discussed in

many papers:

Zhibin Xiao et al. [9] exploit task level parallelism

approach. They partition and map the dataflow of

H.264/AVC encoder to an array of 167-core

asynchronous array of simple processors (AsAP)

computation platform coupled with two shared memories

and a hardware accelerator for motion estimation. They

process the luminance and the chrominance components

in parallel. Intra4x4 modes and intra16x16 modes are

calculated in parallel. Only 3 modes for intra4x4 instead

of 9 and 3 modes for intra16x16 are considered to reduce

the top right dependency. Eight processors are used for

transform and quantification and 17 processors for

CAVLC. A hardware accelerator is used for motion

estimation. Despite all these hardware resources, a real-

time implementation is not achieved. The presented

encoder is capable of encoding VGA (640 x 480) video at

21 frames per second (fps). Reducing the number of

candidate modes for intra4x4 and intra16x16 induces

visual quality degradation and bitrate increase.

Sun et al. [10] implement a parallel algorithm for

H.264 encoder based on MB region partition (MBRP).

They split the frame into several MB regions composed

by adjoining columns of MBs. Then, they map the MB

regions onto different processors to be encoded satisfying

data dependencies in the same MBs row. Simulation

results on 4 processors running at 1.7 GHz show that the

proposed partitioning achieves a speedup by a factor of

3.33 without any rate distortion (Quality, Bitrate)

compared to H264 software JM10.2 [11]. In the other

side, they are still far from real-time implementation that

requires at least 25 f/s. They can encode only

1frame/1.67s for CIF resolution and 1frame/6.73s for SD

resolution.

Zhuo Zhao et al. [12] propose a new wave-front

parallelization method for H.264 encoder. They mix two

partitioning methods: MB row level parallelism and

frame level parallelism. All MBs in the same MB row are

processed by the same processor or thread to reduce data

exchanges between processors. MBs in different frames

can be processed concurrently if the reconstructed MBs

4

in the reference frame forming the search window are all

available. They implement this method using JM9.0 on a

Pentium 4 processor running at 2.8 GHz. Simulations on

4 processors prove that a speedup by a factor of 3 is

achieved (3.17 for QCIF resolution (Quarter CIF

176x144) and 3.08 for CIF). Encoding quality was not

changed and it remains the same as the original software

JM 9.0. In the other side, the runtime is far from real-

time implementation. In fact, only 1frame/1.72s is

encoded for CIF resolution.

Yen-Kuang et al. [13] parallelize the H.264 encoder

exploiting thread-level parallelism using OpenMP

programming model. Slice level partitioning is

performed on 4 Intel Xeon™ processors with Hyper-

Threading Technology. Results show a speedups ranging

from 3.74x to 4.53x. The drawback of slice parallelism is

that it affects the rate distortion performance. Indeed, it

provides PSNR degradation and an important increase in

bitrate especially when the frame is decomposed into

several independent slices.

S.Sankaraiah et al. [14] [15] apply the GOP level

parallelism using multithreading algorithm in order to

avoid data dependencies. Each GOP is handled by a

separate thread. Frames in each GOP are encoded by two

threads: I and P frames by the first thread and B frames

by the second thread. The obtained speedup using dual

and quad core processors are 5.6 and 10 respectively.

The drawback of GOP level parallelism is its very high

encoding latency that is not compatible with video

conference applications.

Rodriguez et al. [16] go a step further and propose an

implementation of H.264 encoder using GOP level

parallelism combined with slice level parallelism on a

clustered workstations using Message Passing Interface

(MPI). The first approach speeds up the processing time

but provides a high latency and the second approach is

used to reduce this latency by dividing each frame into

several slices and distributing these slices to computers

belonging to a subgroup of computers. With this

technique, the encoding latency is relatively reduced.

However, increasing the number of slices per frame has

significant adverse effects on the rate distortion (bitrate

increment). Also, clustered workstations are a costly

solution and they are not intended for embedded

applications.

Shenggang Chen et al. [17] introduce an

implementation of an on-chip parallel H.264/AVC

encoder on hierarchical 64-cores DSP platform. This

platform consists of 16 super nodes (4 DSP cores for

each node). 2D WaveFront algorithm for macroblock

level parallelism is used and one macroblock is assigned

to one super node. Subtasks for encoding one

macroblock such as motion estimation, intra prediction

and mode decision are further parallelized to keep busy

the four DSP cores that form a node. Speedup factors of

13, 24, 26 and 49 are achieved for QCIF, SIF (352x240),

CIF and HD sequences respectively. The proposed

wavefront parallel algorithm does not introduce any

quality loss; however, the used CABAC-based bitrate

estimation and parallel CABAC evolutional entropy

coder cause a bitrate increment. Real-time processing is

not given in this paper.

Ming-Jiang Yang et al. [18] implement the

H264/AVC encoder on the dual-core DSP processor

ADSP-BF561 chipset using functional partitioning. Core

A of the BF561 processor is dedicated to perform mode

decision, intra prediction, motion compensation, integer

transform (IT), quantization, de-quantization, inverse

integer transform, and entropy encoding. Core B is

assigned to perform in-loop filtering, boundary

extension, and half-pel interpolation. Core A and core B

execute tasks in two pipeline stages. The proposed

encoder system achieves real-time encoding for CIF

resolution but not for higher resolutions (VGA, SD and

HD).

Zrida et al. [19] present a parallelization approach for

embedded Systems on Chip (SoCs). It is based on

exploration of task and data levels parallelism, the

parallel Kahn process network (KPN) model of

computation and the YAPI programming C++ runtime

library. The used SOC platform relies on 4 MIPS

processors. Simulation results of this work show that a

speedup of 3.6 is achieved for QCIF format but real-time

encoding is not reached even for low resolutions (7.7 f/s

for QCIF format).

António Rodrigues et al. [20] implement the

H264/AVC encoder on a 32-core Non-Uniform Memory

Access (NUMA) computational architecture, with eight

AMD 8384 quad-core chip processors running at

2.7GHz. Two parallelism levels are combined: slice level

and macroblock level. A multi-threading algorithm

using openMP is used for JM software. The frame is

decomposed into slices; each slice is processed by a

group of cores. Several MBs in the same slice are

encoded in parallel with respecting of data dependencies

by the different cores of the group. The achieved speedup

using the whole set of 32 cores is between 2.5 and 6.8 for

4CIF video (704 × 576). These speedups are not

significant compared to the number of cores used for

encoding. Using a MB level Parallelism requires that

data have to be shared which leads to a memory bottleneck

and higher latency. Also, increasing the number of slices

introduces a bitrate distortion. Real-time is not noticed in

this work.

Olli lehtoranta et al. [21] implement a row-wise data

parallel video coding method on the quad TMS320C6201

DSP system. The frame is decomposed into slices by

row-wise and each slice is mapped to a DSP slave. A

DSP master is devoted to swap data to/from DSP slaves.

The real-time 30f/s is reached only for CIF resolution but

not yet for higher resolutions. The main drawback of this

approach is an increase in bitrate and PSNR degradation

because of using slice level parallelism.

In [22], author develops a parallel implementation of

the intra-prediction H.264/AVC module by using the

computational resources of a GPU and exploiting the

Compute Unified Device Architecture (CUDA)

programming model. They apply two partitioning

5

methods: 1) data partitioning by processing the

luminance Y and the two chroma components Cr, Cb in

different parallel tasks. 2) Task partitioning by

processing the intra prediction 16x16, intra prediction

4x4 and chroma intra prediction in parallel. This

implementation of the intra prediction module achieved a

speedup of 11x, relatively to the sequential

implementation of the reference software but as we know

the inter prediction is the most important module in the

H264/AVC encoder which takes the lion’s share of

processing time. So, preferably, this module should be

accelerated in addition to intra prediction. Moreover,

processing chrominance data in parallel with the

luminance component does not give a significant

speedup if we know that chrominance processing is

negligible relatively to luminance processing. Finally, the

luminance and chrominance processes are not totally

independent; thus; a dependency is existed among the

two components during filtering and entropy coding

processes which leads to a high latency.

Fang Ji et al. [23] propose a H264/AVC encoder on

an MPSOC platform using GOP level parallelism

approach. They build three Microblaze soft cores based

on XILINX FPGA. A main processor is devoted to

prepare the frames into the shared memory. Then, each

processor among the remaining coprocessors will encode

its appropriate GOP. Experiments show that the average

speedup is 1.831. The problem of the GOP approach is

its higher latency. Real-time is not achieved. This

solution encodes only 3 f/s for QCIF resolution.

Xiulian Peng et al. [24] propose a pure line-by-line

coding scheme (LBLC) for intra frame coding. The input

image is processed line by line sequentially, and each

line is divided into small fixed-length segments. The

encoding of all segments from prediction to entropy

coding is completely independent and concurrent at

many cores. Results on a general-purpose computer

illustrate that the proposed scheme can get a 13.9 as

speedup factor with 15 cores but in the other side, this

method affects the rate distortion because of discarding

the Left dependency for each MB.

Huayou Su et al [25] propose a parallel framework

for H.264/AVC based on massively parallel architecture

implemented on NVIDEA’s GPU using CUDA. They

present several optimizations to accelerate the encoding

speed on GPU. A parallel implementation of the inter

prediction is proposed based on a novel algorithm

MRMW (Multi-resolutions Multi-windows) that consists

of using the motion trend of a lower resolution frame to

estimate that of the original frame (higher resolution).

The steps of MRMW are parallelized with CUDA on the

different cores of the GPU. Also they perform a

multilevel parallelism for intra-coding. For that a multi-

slice method is introduced. Each frame is partitioned into

independent slice. At the same time, the wave-front

method is adopted for parallelizing the MBs in the same

slice. Some dependencies within MBs are not respected

to maximize the parallelism. Moreover, CAVLC coding

and filtering processes are also parallelized by

decomposing these modules into several tasks.

Experimental results show that about 20 times the

speedup can be obtained for the proposed parallel method

when compared to the reference program. The presented

parallel H.264 encoder can satisfy the requirement of

real-time HD encoding of 30 fps. In the other side, this

implementation affects the visual quality by inducing a

PSNR degradation ranging from 0.14 dB to 0.77 dB and

a little increase in bitrate because of using multi-slice

parallelism and some dependencies are not respected.

O. Adeyemi et al [26] presents a 4kUHD video

streaming over wireless 802.11n. They perform the entire

encoding chain including 4K camera capture, YUV color

space conversion, H264 encoding using CUDA on

NVIDIA Quadro 510 GPU and real-time live streaming.

To speed up the encoding, several modules are

parallelized such intra and inter prediction modules by

exploiting a dynamic parallel motion algorithm and a

novel intra prediction mode. Also, they used a Zero-

Copy memory allocation technique to reduce memory

copy latencies between the host memory (CPU) and the

GPU memory. Experiments confirm that 4kUHD real-

time encoding for live streaming at low bitrates is

possible. A little deviation on visual quality is induced.

Despite this, GPUs are a costly solution and they are not

suitable for embedded applications because of high

power consumption compared to other platforms.

Wajdi Elhamzi et al [27] present a configurable H264

motion estimator dedicated to video codec on a smart

camera accelerator based on Virtex6 FPGA component.

They propose a flexible solution to adjust the video

stream transferred by the smart camera. The accelerator

is able to support several search strategies at IME

(Integer Motion Estimation) stage and different

configurations for FME (fractional Motion Estimation)

stage. Experiments show that the obtained FPGA based

architecture can process IME on 720x576 video streams

at 67 fps using full search strategy. FPGA solution

remains an interesting way to achieve real-time

processing but when moving to implement the whole

H264 encoder, a huge FPGA surface and a lot of design

and compilation time with tremendous VHDL expertise

are required which may not deal with time-to-market

constraint. Finally, the low hardwired block frequency

and bus bandwidth for data transfers between processor

and accelerator represent the major drawbacks of FPGA

implementations.

4 DSP platform description

Software flexibility, low power consumption, time-to-

market reduction, and low cost make DSPs an attractive

solution for embedded systems implementations and high

performance applications. Motivated by these merits and

encouraged by the great evolution of DSP architectures,

we chose to implement the H264/AVC encoder on a low

cost multicore DSP TMS320C6472 to profit from high

processing frequency and an optimized architecture in

order to achieve real-time embedded video encoder.

6

TMS320C6472 DSP [28] belongs to the latest generation

of multicore DSPs made by Texas Instrument. Low

power consumption and a competitive price tag make the

TMS320C6472 DSP ideal for high-performance

applications and suitable for many embedded

implementations. Several benchmarks are performed by

Texas Instruments to compare between DSP, General

Purpose Processors (GPP) and Graphic Processor Unit

(GPU) [29] [30]. These benchmarks demonstrate that the

C6472 consumes 0.15 mW/MIPS (Million instructions

per second) at 3 GHz. Also, at 3.7 watts per device, it

offers even greater power savings compared to GPP in

the same performance range. When the performance is

distributed over power, the DSP is 4x more better than

GPU and 18x than GPP.

As presented in Fig. 4, six C64x + DSP cores, very

long instruction word (VLIW) architecture, 4.8 M-Byte

(MB) of memory on chip, Single Instruction Multiple

Data (SIMD) instruction set and a frequency of 700 MHz

for each core are combined to deliver 33600 MIPS

performance.

Fig. 4 Internal architecture of TMS320C6472 DSP

Each C64x+ core integrates a large amount of on-chip

memory organized as a two-level memory system. The

level-1 (L1) program and data memories on this C64x+

core are 32 K-Byte (KB) each. This memory can be

configured as mapped RAM, cache, or any combination

of the two. The level 2 (L2) memory is shared between

program and data space and is 608 KB in size. L2

memory can also be configured as mapped RAM, cache,

or any combination of the two. In addition to L1 and L2

memory dedicated to each core, the six cores also share

768 KB of L2 shared memory. Shared L2 memory is

managed by a separate controller and can be configured

as either program or data memory. This large amount of

on-chip memory may avoid access the external DDR2

memory, therefore reducing the power dissipation and

accelerating algorithms processing since internal memory

is faster than external memory. Performance is also

enhanced using the EDMA (Enhanced Direct Memory

Access) controller which is able to manage memory

transfers independently from the CPU. Therefore, no

additional overhead is caused when large data blocks are

moved between internal and external memory.

TMS320C6472 DSP supports different communication

peripherals as Gigabit Ethernet for Internet Protocol (IP)

networks, UTOPIA 2 for telecommunications and Serial

RapidIO for DSP-to-DSP communications. This DSP

consequently includes all the necessary components

(DMA, RAM (Random Access Memory), input output

management) required to communicate with a camera

sensor. Note also that VLIW architectures are

deterministic and dedicated to embedded hard real-time

applications. This must be taken into account when

compared to superscalar GPP (General Purpose

Processors) based on expensive and consuming memory

management units, out-of-order units etc.

Finally, it is clear that the power and the features of

such DSP family perfectly fit the need of intelligent

vision system embedded in smart cameras. It should also

allow designers to build highly scalable camera that can

follow the latest advances in video compression.

5 Optimized implementation on a single DSP core

Our choice for using this multicore DSP platform enables

us to develop an academic H264/AVC codec [31] in our

LETI laboratory (Laboratory of Electronics and

Information Technologies) for future research and

development targeting embedded video applications.

Standard compliant LETI’s codec was developed and

tested first on a PC environment for validation and then

migrated to TMS320C6472 DSP platform. This work

will also benefit for our future H265 implementation.

To efficiently take advantages of multicore

technology and the potential parallelism presented in the

H264 standard, we must as a first step, elaborate an

optimized H264/AVC architecture on a single DSP core

and then move to a multicore implementation. This step

consists of designing a data model that exploits DSP core

architecture and especially internal memory which is

faster than external SDRAM memory. Each core of

TMS320C6472 DSP has 608 KB internal memory

LL2RAM shared between program and data. Preferably

and to the extent of possible, we should load both

program and data within LL2RAM. For that reason, two

implementations are proposed [32].

5.1 «MB level » implementation

This implementation is the conventional data structure

processing in H264/AVC standard. It is based on

encoding a MB followed by another MB until finishing

the entire frame MBs. The principle of this first proposed

architecture is detailed as follows: the program is loaded

into internal memory LL2RAM. The current, the

reconstructed, the reference frames and the bitstream are

stored into external SDRAM memory regarding their

important sizes for HD resolution. In order to avoid

working directly with slow external memory, some data

are moved into internal memory such as current MB,

search window and reconstructed MB for the 3 YCrCb

7

components. The design of the MB level implementation

is presented in Fig. 5. It highlights the memory

allocations for the luminance components.

…...

…...

…...

Luma Y Reference Frame Luma Y Reconstructed Frame

Luma Y

Current Frame

External memory DDR2

Internal memory LL2RAM

Search window

Current MB
Reconstructed MB

s
te

p
1

S
te

p
 2

S
te

p
 3

CPU:Data processing

Bitstream

Fig. 5 « MB level » implementation

The DSP core transfers the current MB (16x16) and the

search window (48x48) respectively from the current and

the reference frames from external to internal memory.

Consequently, the data processing can be performed by

the DSP core without external memory accesses. The

reconstructed MB (20x20), extended by 4 pixels at the

left and the top needed in the MB filtering, is transferred

from the local memory into external memory at the

reconstructed frame buffer. This process is repeated until

completion of the entire current frame MBs. The most

important advantage of this architecture is its adaptability

to any DSP even in the case of small internal memory. In

fact, only 55.54 KB of internal memory space is required

for 720p HD (1280x720) resolution. The major

drawbacks of this architecture are the multiple accesses

to external memory for each required to transfer a current

or a reconstructed MB. It also needs to store the left and

top neighboring pixels used in the prediction and filtering

of the next MBs after each MB processing.

5.2 « MBs row level» implementation

To avoid the first architecture’s drawbacks, a second

implementation is proposed. The principle of this

implementation as illustrated in Fig. 6 consists of loading

one MBs row (16 x frame_width) from the current frame

and 3 MBs rows (48 x (16+ frame_width +16)) for the

search window from the reference frame to the

appropriate buffers created in internal memory. The DSP

core encodes the whole current MBs row without

external memory access. Then, the reconstructed MBs

row (20 x (16+ frame_width +16)) is transferred from

LL2RAM to SDRAM memory in the reference frame.

Thus, it is not necessary to create another memory buffer

for the reconstructed frame. The reference frame buffer

can be exploited to store the reconstructed MBs row;

since overwritten data will not be used (they are already

copied into the 3 MBs rows of the search window).

Moving to the second current MBs row, it is not

necessary to load 3 MBs rows for the search window

from the reference frame, just shift up the last two MBs

rows of the search window in the internal memory and

bring the third from the fourth MBs row of the reference

image.

…...
…...

Luma Y Reconstructed &

reference frame
Luma Y Current Frame

External memory

Internal memory LL2RAM

3 MBs rows Search window

Current MBs row Reconstructed MB row

Bitstream

…...

…...

…...
…...
…...

…...

…...

…...
…...
…...

S
te

p
 1 S

te
p

 3

S
te

p
 2

CPU:Data processing

Fig. 6 « one MBs row level » implementation

This approach outstandingly reduces the access to

external memory. Thus only one memory access to

external memory for reading one MB row instead of 80

accesses to read 80 MBs that form a MB row for HD

720p frame (1280/16=80). The same prevail for saving

the reconstructed MB row. In addition, when proceeding

at a MBs row level architecture, all the left boundaries

required in the next MB prediction and filtering are

already available in internal memory, so the left

neighboring pixels backup is removed. Moreover, this

implementation reduces the backup of TOP boundaries,

since storing top boundaries is required only one time

after finishing processing the whole MBs row, whereas,

the MB level implementation needs to store top

neighboring pixels after processing each current MB.

5.3 Experimental Results for the mono-core

implementation

In this preliminary work, the two proposed

architectures are implemented on a single DSP core

TMS320C6472 running at 700 MHz using the

H264/AVC LETI’s codec. Experimental simulations are

performed on the most commonly used video test

sequences with CIF resolution downloaded from this

website [33]. These sequences are a raw data in the

YUV 4:2:0 format recommended by the Joint Video

Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

organizations [34] that developed the H264 codec. The

number of processed frame is 300. The GOP size is equal

to 8 as follows: IPPPPPP IPPP....P. Quantification

Parameter (QP) is 30. Table 1 shows the performance of

8

the two implementations based on encoding speed. The

second architecture can save up to 18.71% of run-time.

Using a single DSP core, encoding time is yet close to

real-time (25 f/s) for CIF resolution.

Table 1 Performance evaluation of the proposed

implementations for CIF (352x288) resolution

CIF sequence

Encoding speed

using MB level

implementation (f/s)

Encoding speed using

MB row level

implementation (f/s)

Foreman 19.72 24.19

Akiyo 20.69 24.73

News 21.76 25.21

Container 20.39 24.80

Tb420 18.64 22.79

Mobile 18.73 22.77

Speed

average (f/s)
19.98 24.58

After verifying that «MBs row level» architecture is the

well optimized implementation, this architecture is then

evaluated for higher resolutions: SD (720x480) and HD

(1280x720). Table 2 presents the achieved encoding

speeds when applying «MBs row level» architecture on a

single DSP core for several uncompressed YUV 4:2:0

SD and HD video sequences. At first, these video

sequences are downloaded in a compressed HD RGB

format from the video-sharing website YouTube; then

they are converted into YUV 4:2:0 format and resized

into SD resolution using OpenCv library [35]. The

number of processed frames is 1200 frames, QP=30 and

GOP size is equal to 8.

Table 2 Performance evaluation of the second

implementations for SD and HD resolutions on a single

DSP core

sequence

Encoding speed

for SD resolution

on a single DSP

core (f/s)

Encoding speed

for HD resolution

on a single DSP

core (f/s)

Planets 7.047 2.663

Power of

natures
7.193 2.651

Turtle 6.827 2.609

Vague 7.03 2.696

Nature 7.36 2.756

Bird 7.928 2.999

Speed average

(f/s)
7.23 2.73

It is clear that mono-core processors with low CPU

frequency cannot meet the real-time requirement for high

resolution videos. Thus, moving to a multicore

implementation and exploiting the H264 parallelism are

mandatory to reach real-time encoding for VGA and SD

resolutions and improve the encoding speed for HD

resolution.

6 Multicore implementation using Frame Level

Parallelism

6.1 Implementation strategy

From previous works detailed in the past section, the

conclusion that could be taken is that each of the

partitioning method has as many advantages as

drawbacks. 1) GOP level parallelism ensures a good

speedup but involves very high encoding latency. 2)

Frame level parallelism improves efficiently the

encoding run-time with low latency. 3) Slice Level

parallelism improves the encoding speed but induces

PSNR degradation and bitrate increase. 4) Load balance,

large data transfer and synchronizations between

processors are the important drawbacks of MB level

parallelism. 5) Regarding functional partitioning, this

approach is not suitable for H.264/AVC encoder [10] due

to two reasons. First, large amount of data transfer

among processors will demand a large system bandwidth

to assure inter-processor communication. Second,

functions in H.264/AVC encoder have different load

balance, so it is hard to equally map functions among

processors. Thus, the final performance is always

restricted by the processor with the heaviest load. Based

on these observations, the frame level parallelism

approach will be applied in order to enhance the

encoding speed and get a low latency without inducing

any rate distortion (PSNR degradation and bitrate

increase).

Our multicore implementation using FLP approach

will exploit the optimized mono-core architecture

implemented on a single DSP core which is the «MBs

row level» implementation. The approach of our real-

time demo implementation is described in Fig. 7.

In a preliminary step, our DSP platform is connected

to a personal computer (PC) via a Gigabit Ethernet link

in order to achieve real-time TCP/IP (transmission

Control Protocol /Internet Protocol) data transfers

between them. The PC itself is linked to a Universal

Serial Bus (USB) HD webcam to capture RAW video

and send it to DSP for encoding. Once the DSP will be

integrated in a smart camera system, the PC will no

longer be needed.

In this work, the personal computer is used only for

validation purposes because our platform has not yet a

frame grabber interface. A commonly used video test

sequences in YUV 4:2:0 format are used for encoding.

Then, the similarity between the output of our DSP

implementation and that of the PC implementation is

verified. Even the Ethernet data transfer is used only to

ensure a real-time data transfer but it is not our principle

aim. The main of our work is to bring out the efficiency

of our processor to meet real-time constraint for the most

complex application (video encoding). So if this

processor will be the kernel of a smart camera platform,

several image and video processing applications could be

performed and real-time constraint could be satisfied.

Core 0

DSP/BIOS

project

TCP

server. out

Network

developer'

s Kit &

CSL APIs

Visual C/C++ project

OpenCv library

Frame capture,

resize, conversion

from RGB to

YUV4:2:0

Transfer data using

TCP/IP protocol

TCP Stream socket

Client (@IP, port

number)

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM

current

frame SRC

core1

RECT frame

core1

Bitstream

core1

Core 1

DSP/BIOS

project

H264

encoder.

Out

CSL APIs

EVMC6472 DSP

Send 5

current

frames

1

Recv

Bitstream

of 5 frames

2

3

4

6

Bitstream decoding TV
7

current

frame SRC

core5

RECT frame

core5

Core 5

DSP/BIOS

project

H264

encoder.

Out

CSL APIs

2

3

4Bitstream

core5

.

.

.

5

5

.

.

.

Fig. 7 Encoding demo using Frame Level parallelism algorithm

The image acquisition will be in real-time and in this

case, TCP/IP data transfers with Gigabit Ethernet will not

be required since the camera interface will be directly

connected with the DSP memory. This work may

encourage producers to develop a new generation of

smart cameras based on multicore DSPs that can perform

a sophisticated image and video processing applications

and capable to satisfy real-time constraint.

 As our DSP platform includes 6 DSP cores, the first

core “core0” is assigned as a master. It executes a TCP

server program. It is devoted to establish TCP/IP

connection with the client (PC) exploiting Texas

Instruments (TI) NDK library (Network Developer’s Kit

[36]). In a first step, it receives the current frames sent by

the PC after camera capture and stores them into the

external memory which is a shared memory between all

the DSP cores. The 5 remaining DSP cores are used to

encode the 5 received frames. For each core, a memory

section is reserved to store the current frame (SRC), the

reconstructed frame (RECT, which will be the reference

frame for the next core) and finally a bitstream buffer

where the bitstream will be stored. After encoding, the

core0 server sends the bitstream of all encoded frames to

the client (PC) in order to store or display it. Into the

internal program memory of core0, a TCP server program

is loaded to establish connection between the DSP and the

PC. H264/AVC algorithm is loaded into each internal

program memory of the 5 remaining cores. Thus, a C++

project is developed and executed on the PC in order to

capture video from the camera. Our program is based on

OpenCv library which is used to convert the captured

frames from RGB to YCrCb 4:2:0 format. A TCP socket

(@IP, Port number) is created to transmit data between

core0 (server) and the PC (client).

When applying frame level parallelism and exploiting

«One MBs row level implementation», core i starts

encoding its appropriate frame only if core i-1 has

finished encoding at least 3 MBs rows from the previous

frame. These 3 MBs rows will be used as the search

window for the motion estimation of the first MBs row

of the current frame processed by core i (see section 5.2).

Thus, inter data dependency is respected and

consequently, no rate distortion will be provided.

The steps of encoding a video sequence using FLP

are detailed as follows (Cf. Fig. 8):

 After establishing connection between the PC and the

DSP, core0 receives 5 frames from the PC as 5 cores are

devoted to encoding. Each frame is loaded into the SRC

buffer of each remaining core (1-5).

 When the reception of the 5 current frames is

completed, core0 sends 5 inter processor communication

interruption events (IPC) to cores 1-5; which are in a wait

state for an interruption event from core0; to indicate that

SRC frames are already in external memory so they can

start encoding.

 Core1 is the first core that begins encoding. Upon

completion encoding the first 3 MBs rows of the SRC

frame, it sends an IPC to the next core (core2) which itself

is in a wait state for an interruption from core1 to start

encoding its appropriate frame. The same procedure will

be reproduced from core3 to core5.

 To avoid that core i exceeds core i-1 (which is

possible because the load balance is not uniform between

successive frames and it could give an erroneous result),

the encoding of the next MBs row is conditioned with the

reception of an IPC from the previous core. Thus, each

core will send an IPC to its next core after encoding a

MBs row that its index is higher than 3. Since each core

starts encoding after its previous core finishes encoding 3

MBs rows, it should not wait an IPC from the previous

core to encode the last 2 MBs rows of each SRC frame;

otherwise encoding will be blocked by waiting an

incoming IPC. As a result, each core will totally send

Max_MBs_rows - 2 interruptions to the next core. When

all cores finish encoding the current frames and

specifically core5 which is the last core that finishes its

task, cores1 to 5 send 5 IPCs to core0 which is in a wait

state to indicate that the bitstream of 5 frames is ready in

external memory to be transferred to the PC.

Capture Frame1 + send

Send IPCs to

 cores 1-5

Core 0PC Core 1 Core 2 Core 5……….....

Capture Frame2 + send

Capture Frame3 + send

Capture Frame4 + send

Capture Frame5 + send

Rcv frame 1

Rcv frame 2

Rcv frame 3

Rcv frame 4

Rcv frame 5

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…
...

Send IPC to core2
Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1
…

...

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…
...

….

Send IPC to core0

Send IPC to core0
Send Bitstream frame 1

Send Bitstream frame 2

Send Bitstream frame 3

Send Bitstream frame 4

Send Bitstream frame 5

Rcv Bitstream frame 1

Rcv Bitstream frame 2

Rcv Bitstream frame 3

Rcv Bitstream frame 4

Rcv Bitstream frame 5

Time

Wait

Wait

WaitWait

Wait

Send IPC to core0

Wait

Wait

Wait

T=0

Fig. 8 The chronological steps of the Frame Level Parallelism approach on the multicore DSP TMS320C6472

 When receiving these 5 IPCs, core0 sends the

bitstream of the 5 frames to PC via the Gigabit Ethernet

link.

 After the end of bitstream receiving, the PC captures

another 5 frames and sends them to core0. The same work

thereby will be reproduced.

6.2 Cache coherency

Multicore processing often leads to cache coherency

problem. This is due to the simultaneous access of two or

more cores with a separate cache memory for each core

to the same location in a shared memory. In general

purpose multiprocessor, programmers don’t have such

problem because it is controlled automatically by a

complex hardware. But in our multicore DSP

architecture, designers have to control it, since there is no

such automatic controller. In order to deal with cache

coherency, the Chip Support Library (CSL library) [37]

from TI provides two API commands:

 CACHE_wbL2((void *)XmtBuf, bytecount,

CACHE_WAIT) to write back the cached data from the

cache memory to its location in the shared memory.

 CACHE_invL2((void *)RcvBuf, bytecount,

CACHE_WAIT) to invalidate the cache lines and force

the CPU to read data from its location in the shared

memory.

In our case, when core0 receives the current frames

from the PC, it should write back the cached data to

external memory. In the other side, core1 to core5 should

invalidate the current SRC frames addresses in the cache

memory before starting encoding in order to use the

updated data. Also, when core1 to core5 complete

encoding, they should write back the bitstreams from the

cache memory to the external memory in order to

overcome the cache coherence with core0 which will

send the bitstream from external memory to the PC.

Furthermore, among core1 to core5, the problem of cache

coherency exists because core i will read data (the search

window) written by core i-1 (Reconstructed MBs row).

So, the same principle should be applied. Before sending

an IPC to the next core, a write-back of the reconstructed

MBs row must be applied. In the other side, the next core

should invalidate the cached data of the search window

before starting encoding in order to use an updated data

written by the previous core.

6.3 Experimental results for the Frame Level

Parallelism implementation on 5 DSP cores

When applying the Frame Level Parallelism method with

the « One MBs row level architecture» on 5 DSP cores,

each core is delayed by 3 MBs row from its antecedent.

Thus, the fifth core is delayed by 12 MBs rows with

respect to the first core. Let consider T the average time

needed to encode a MBs row and Max_MBs_row the

number of MBs rows in a frame equal to the frame’s

height divided by the MB’s height. So, encoding 5

frames using FLP approach on 5 DSP cores needs

Max_MBs_row*T+4*3*T instead of 5*

Max_MBs_row*T for sequential encoding. Thus, the

different theoretical speedup factors that could be

reached for different resolution are computed as follows:

11

For CIF (352x288), Max_MBs_row=288/16=18 and

s𝑝𝑒𝑒𝑑𝑢𝑝 =
(18𝑥5)𝑥𝑇

(12+18)𝑥𝑇
= 3.

For SD (720x480), Max_MBs_row=480/16=30 and

s𝑝𝑒𝑒𝑑𝑢𝑝 =
(30𝑥5)𝑥𝑇

(12+30)𝑥𝑇
= 3.57.

For HD (1280x720), Max_MBs_row=720/16=45 and

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
(45𝑥5)𝑥𝑇

(12+45)𝑥𝑇
= 3.94.

Several experiments have been performed on the

same video sequences used in the mono-core

implementation in order to correctly evaluate the

performance of the two implementations. Tables 3, 4 and

5 illustrate respectively the encoding speeds (f/s) for CIF,

SD and HD resolutions for the mono-core and the

multicore implementations. 5 DSP cores, running each at

700 MHz, are exploited for H264/AVC encoding using

the FLP approach presented above. The speedup is also

computed and presented for each video sequence.

The number of frames to be encoded is 300 frames

for CIF resolution and 1200 frames for SD and HD

resolution. The chosen QP is 30 and GOP size is 8

(IPPPPPP IPPP…).

When using 5 cores with GOP size equal to 8, the

intra frame “I” will be firstly processed by the core1 then

by the core4 for the second GOP then by the core2 for

the third GOP etc. So, core1 does not process only “I”

frames but also a “P” frames and in this case, its

reference frame is the reconstructed frame of the last core

which is the core5. If GOP size is equal to 5 (IPPPP

IPPPP…) core1 in this case will process only intra

frames and as result, load balance is not uniform among

DSP cores.

Experiments on 5 DSP cores show that speedup

factors of 2.92, 3.33 and 3.74 are achieved respectively

for CIF, SD and HD resolutions. Experimental results

approximately verify the theoretical results. Thus, the

obtained speedup factors are lightly less than the

maximal speedups. This is due to: inter-communications

needed among different cores, write-backs and cached

data invalidations. The proposed FLP implementation

achieves an encoding speed about 70 f/s for CIF

resolution surpassing real-time constraint of 25 f/s.

Encoding speed is efficiently improved for SD and HD

resolutions compared to mono-core implementation.

Encoding speed for SD resolution is very close to

real-time since the average encoding speed is 24 f/s.

Table 3 Encoding speed for CIF (352x288) resolution

CIF

sequence

Encoding speed

on one core (f/s)

Encoding speed

on 5 cores (f/s)
Speedup

Foreman 24.19 71.22 2.94

Akiyo 24.73 72.36 2.93

News 25.21 74.16 2.94

Container 24.80 72.18 2.91

Tb420 22.79 65.66 2.88

Mobile 22.77 66.99 2.94

Average 24.58 70.43 2.92

Table 4 Encoding speed for SD (720x480) resolution

SD

sequence

Encoding speed

on one core (f/s)

Encoding speed

on 5 cores (f/s)
Speedup

Planets 7.047 23.76 3.37

Power of

natures
7.193 23.58 3.27

Turtle 6.827 23.24 3.40

Vague 7.03 24.11 3.43

Nature 7.36 23.63 3.21

Bird 7.928 26.24 3.31

Average 7.23 24.09 3.33

Table 5 Encoding speed for HD (1280x720) resolution

HD

sequence

Encoding speed

on one core (f/s)

Encoding speed

on 5 cores (f/s)
Speedup

Planets 2.663 10.12 3.80

Power of

natures
2.651 9.78 3.70

Turtle 2.609 9.96 3.82

Vague 2.696 10.20 3.78

Nature 2.756 9.97 3.62

Bird 2.999 11.09 3.70

Average 2.73 10.18 3.74

7 Enhanced Frame Level Parallelism approach:

hiding communication overhead

The first implementation of the FLP approach improves

the encoding speed compared to the mono-core

implementation but does not efficiently exploit the DSP

cores. A lot of time is wasted (processor waiting data)

which reduces our multicore implementation efficiency.

Moreover, communication overhead is not optimized. To

avoid these drawbacks, this part presents the enhanced

version of FLP approach based on hiding communication

overhead. For the first version of the FLP approach,

core1 to core5 wait that core0 completes the reception of

5 frames, although encoding can be immediately started

after the reception of the first frame. Furthermore, core0

waits that core1 to core5 finish encoding their respective

frames in order to start sending the bitstreams, although

it can start sending to the PC any available bitstream. In

the other side also, during encoding, core0 is in a wait

state; so this time could be exploited to prepare the next 5

frames in order to overlap frames encoding and frames

reading processes. To realize these optimizations, a ping

pong buffer is used for each SRC frame instead of a

single buffer used for the first implementation as shown

in Fig. 9. A multithreading approach is employed on the

PC side. Three threads are used to manage reading raw

frames, sending them via Ethernet, receiving encoded

bitstream and saving it in a file.

The strategy of our implementation is described in

Fig. 10 and consists of the following steps:

12

Visual C/C++ project

For(i=0;i<5;i++)

{

 Capture frame SRC[frame_size];

 Send (SRC[frame_size]) ;

}

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM

Ping current

frame SRC[0]

Pong current

frame SRC[1]

RECT frame

Bitstream[0]

Core 1

DSP/BIOS

project

H264

encoder.

Out

CSL APIs

EVMC6472 DSP

Send 5

current

frames

1

Recv

Bitstream

of 5

frames

Core 0

DSP/BIOS

project

TCP server.

out

Network

developer's

Kit & CSL

APIs

2
3

4

6

Ping current

frame SRC[0]

Pong current

frame SRC[1]

RECT frame

Core 5

DSP/BIOS

project

H264

encoder.

Out

CSL APIs

2
3

4

Bitstream[1]

Bitstream[0]

Bitstream[1]

.

.

.

5

5

Bitstream[1][0]

Bitstream[1][1]

Bitstream[1][2]

Bitstream[1][3]

Bitstream[1][4]

Bitstream[0][0]

Bitstream[0][1]

Bitstream[0][2]

Bitstream[0][3]

Bitstream[0][4]

For(k=0;k<FramesToBeEncoded/5;k++)

{

 For(i=0;i<5;i++)

 {

 Rcv (bitstream [k&1] [i])

 }

}

SRC[frame_size]

For(k=0;k<FramesToBeEncoded/5;k++)

{

 For(i=0;i<5;i++)

 {

 write (bitstream [k&1] [i])

 }

}

Thread1 (reading and sending)

Thread2 (bitstream receiving)

Thread3 (bitstream writing)

Fig. 9 The enhanced Frame Level Parallelism approach

Frame15

Frame10

Frame5

Frame11

Frame6

Frame1

Frame12

Frame7

Frame2

Send IPC to core0

Send IPC to core2

Capture Frame1 + send
Send IPC to core1

Core 0Thread1 Core 1 Core 2 Core 5
……….....

Capture Frame2 + send

Capture Frame3 + send

Capture Frame4 + send

Capture Frame5 + send

Rcv frame 1

Rcv frame 2

Rcv frame 3

Rcv frame 4

Rcv frame 5

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

….

Send Bitstream frame 1

Send Bitstream frame 2

Send Bitstream frame 3

Send Bitstream frame 4

Send Bitstream frame 5

Rcv Bitstream frame 1

Rcv Bitstream frame 2

Rcv Bitstream frame 3

Rcv Bitstream frame 4

Rcv Bitstream frame 5

Time

Wait

Wait

Wait

T=0

Send IPC to core3

Send IPC to core4

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Capture Frame6 + send

Capture Frame7 + send

Capture Frame8 + send

Capture Frame9 + send

Capture Frame10+send

Rcv Frame6

Rcv Frame7

Rcv Frame8

Rcv Frame9

Rcv Frame10

Send IPC to core1

Send IPC to core3

Send IPC to core2

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core0

Send IPC to core0

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core0

write Bitstream frame 1

write Bitstream frame 2

write Bitstream frame 3

write Bitstream frame 4

write Bitstream frame 5

Thread2Thread3

Capture Frame11+send

Capture Frame12+send

Capture Frame13+send

Capture Frame14+send

Capture Frame15+send

Rcv frame 11

Rcv frame 12

Rcv frame 13

Rcv frame 14

Rcv frame 15

Send IPC to core1

Send IPC to core2

Send Bitstream frame 6

Send Bitstream frame 7

Send Bitstream frame 8

Send Bitstream frame 9

Send Bitstream fr 10

Rcv Bitstream frame 6

Rcv Bitstream frame 7

Rcv Bitstream frame 8

Rcv Bitstream frame 9

Rcv Bitstream frame 10

write Bitstream frame 6

write Bitstream frame 7

write Bitstream frame 8

write Bitstream frame 9

write Bitstream fr 10

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Send IPC to core5

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core0

Send IPC to core0

Send IPC to core0

Rcv Frame16

Rcv Frame17

Rcv Frame18

Rcv Frame19

Rcv Frame20

Send IPC to core1

Send IPC to core4

Capture Fr16 + send

Capture Fr17 + send

Capture Fr18 + send

Capture Fr19 + send

Capture Fr20+send

Send Bitstream fr 11

Send Bitstream fr 12

Send Bitstream fr 13

Send Bitstream fr 14

Send Bitstream fr 15

Rcv Bitstream fr 11

Rcv Bitstream fr 12

Rcv Bitstream fr 13

Rcv Bitstream fr 14

Rcv Bitstream fr 15

write Bitstream fr 11

write Bitstream fr 12

write Bitstream fr 13

write Bitstream fr 14

write Bitstream fr 15

Wait

WaitWait

Wait

Wait

Wait

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core0

EVM C6472PC

Send IPC to core0

Fig. 10 The chronological steps of Enhanced Frame Level Parallelism on the multicore DSP TMS320C6472

13

 The first thread “thread1” captures the first frame from

the camera and sends it to core0 which will store it into the

ping buffer SRC[0] of core1. Core0 sends then an IPC to

core1 to indicate that it can start encoding its current frame.

 When receiving an IPC from core0, core1 triggers the

encoding. At the same time thread1 moves to read and send

the second frame to core0 which will store it into the ping

buffer of core2. This step is repeated until receiving of 5

frames. Thus, each core immediately starts encoding after

core0 receives its current frame without waiting the

reception of all the frames.

 While core1 to core5 encode their frames with the same

principle as the first FLP implementation, thread1 sends the

next 5 frames to core0 which will store them into the pong

buffers SRC[1] for each core. Because encoding process

takes more time than reading process, communication

delays are hidden and they do not contribute to the parallel

run-time.

 When encoding is achieved on a core i, the bitstream is

stored into the ping buffer bitstream[0]. Then, core i sends

an IPC to core0 to inform that it can forward its bitstream to

the PC. After that, core i starts encoding its pong frame

stored into SRC[1] without any wait and stores the bitstream

into the pong buffer bitstream[1] (to not overwrite data

stored into bitstream[0]).

 While core i encodes its pong frame, core0 sends the

ping bitstream [0] corresponding to core i without waiting

that all cores finish encoding their respective frames. The

second thread “thread2” receives the ping bitsteams and

stores them into the ping buffers Bitstream[0][i]. Then, the

third thread “thread3” writes the bitstreams in a file and at

the same time thread1 sends the next 5 frames to core0

which will store them into the ping buffers SRC[0] of each

core. With this technique, the ping bitstreams writing, the

pong SRC frames encoding and the next 5 ping SRC frames

capturing and sending are processed in parallel.

 The processing is then looped in a reverse order for SRC

frames and bitstreams through ping pong buffers.

When looking at Fig. 10, no significant delays have

occurred. All cores process their respective data without

any waiting time. The enhanced FLP algorithm efficiently

exploits the multicore platform. Multithreading algorithm

with ping pong buffers technique efficiently overlap data

transfer with encoding process.

7.1 Experimental results for the Enhanced FLP

implementation on 5 DSP cores

To evaluate our enhanced FLP approach implementation in

terms of encoding speed and speedup factor, several

experiments have been performed on different video

sequences with different resolutions as the first

implementations.

Table 6, 7 and 8 show respectively the achieved

encoding speeds and speedup factors for the two

implementations: the mono-core implementation and the

enhanced FLP implementation on 5 DSP cores. For SD and

HD resolutions, 1200 frames are encoded and 300 frames

for CIF resolution. The used QP is equal to 30 and GOP

size is 8. The presented results prove that our enhanced

FLP implementation allows us to meet the real-time

constraint for CIF and SD resolutions. Our encoder can

process up to 98 f/s for CIF sequences and 31 f/s for SD

resolution. Experiments show that a speedup of more than 4

times is achieved (4.11 for CIF, 4.38 for SD and 4.52 for

HD). The real-time is not yet achieved for HD resolution

but our enhanced FLP allows us to save up to 77% of

encoding time and processes up to 12 f/s instead of 2.73 f/s

on a single core.

Table 6 Encoding speed for CIF (352x288) resolution

between the mono-core and the enhanced FLP

implementation

CIF

sequence

Encoding speed

on a single core

(f/s)

Encoding speed

on 5 DSP cores

(f/s)

Speedup

Foreman 24.19 99.55 4.11

Akiyo 24.73 102.08 4.13

News 25.21 103.77 4.12

Container 24.80 102.19 4.12

Tb420 22.79 94.14 4.13

Mobile 22.77 91.20 4.00

Average 24.58 98.82 4.11

Table 7 Encoding speed for SD (720x480) resolution

between the mono-core and the enhanced FLP

implementation

SD

sequence

Encoding speed

on a single core

(f/s)

Encoding speed

on 5 DSP cores

(f/s)

Speedup

Planets 7.047 30.70 4.36

Power of

natures
7.193 31.26 4.34

Tortue 6.827 30.58 4.48

Vague 7.03 30.83 4.38

Nature 7.36 32.22 4.38

Bird 7.928 34.83 4.39

Average 7.23 31.73 4.38

Table 8 Encoding speed for HD (1280x720) resolution

between the mono-core and the Enhanced FLP

implementation

HD

sequence

Encoding speed

on a single core

(f/s)

Encoding speed

on 5 DSP cores

(f/s)

Speedup

Planets 2.663 12.03 4.52

Power of

natures
2.651 11.93 4.50

Tortue 2.609 11.71 4.49

Vague 2.696 12.23 4.54

Nature 2.756 12.43 4.51

Bird 2.999 13.59 4.53

Average 2.73 12.32 4.52

During our measure of the enhanced FLP encoding speed,

the cost of data transfer is taken into account. The time of

capturing frames, transferring them to DSP, receiving them

by core0, and loading them to DSP memory has

consequently been added to the encoding time in order to

evaluate the efficiency of our enhancement.

Experimental results show that our proposed data

transfer scheduling technique completely hides the

14

communication overhead. The time of data transfers does

not contribute in the run-time thanks to using the ping pong

buffer technique and multi-threading processing. The

achieved speedup factor is higher than the non-optimized

FLP since the obtained speedup factor is 4.52x instead of

3.74x for HD resolution. Encoding speed is significantly

increased from 24 f/s to 31.73 f/s surpassing the real-time

compliant for SD resolution. Our proposed enhancement

efficiently exploits our multicore platform and allows us to

get a good saving time (77%) for HD resolution.

Finally, for low and medium video resolutions such as

CIF, VGA (640x480) and SD, some cores could be free

which allowing us to exploit them to perform other tasks

(biometric recognition and access control, texture and

position detection, surveillance application etc). This will

give an important advantage for our multicore DSP if

integrated into a smart camera system.

It may be noted that several factors are contributed to

achieve this performance despite that encoding steps,

detailed above, transmit the idea that there is always a

simultaneous accesses to the external memory by the

different cores which may causes a significant latency.

First, our encoding implementation is based on “MB

row level architecture”, so each core reads a MB row from

the external memory to the internal L2 memory. The

processing will be performed thereafter by the CPU

between the L1 and L2 level memories which reduces the

external memory bottleneck situation. Secondly, 128 kbytes

of L2 memory are configured as cache for each core. Thus,

access to a memory location triggers a prefetch of a “line”

of memory locations into cache by the cache controller.

This allows reducing the cache misses so accelerating

encoding run-time. Reconstructed fraction and bitstream

are not copied directly into the external memory after their

processing but they are kept into the cache memory which

reduces the external memory access. Third, in addition to

eight processing units for each core which allow

performing eight instructions per cycle, code composer

studio IDE (Integrated Development Environment for DSP

programming) allows generating an optimized assembler

code that exploits the maximum of pipeline. Thus, the

different cores may do not perform the same load

instruction from the external memory at the same time, a

core i can perform prefetch instructions, other core can

perform load instruction and another one can execute ADD

instructions for example etc. Moreover, our enhanced

implementation is a pipelined design; there is a timing

delay between the different cores. So reading current MB

rows and writing bitstreams are not necessarily performed

at the same time by all cores. Furthermore, the C6472

includes also a switch fabric module that provides

arbitration between the different cores to access the

external memory which is a 32-bit DDR2-533 SDRAM

with up to 2133 MBps of throughput. Several test show that

this bandwidth is enough to support multiple DSP cores

accessing the DDR2 memory simultaneously [38]. Finally,

the DDR2 memory on the C6472 EVM contains eight

banks and every bank can have an open row or page, so

eight rows can be opened at the same time. This

dramatically reduces the row switch overhead.

Table 9 presents a comparison between our approach

and other implementations performed on several platforms

and applying different methods of parallelism. Experiments

show that several implementations have not satisfied the

real-time constraint. In fact, JM software is not an

optimized algorithm which makes it hard to reach a real-

time performance.

Table 9 Comparison of parallelization approaches on different platforms

approach Our approach [9] [10] [12] [21] [23] [25]

Partitioning

method

Frame Task MB region

partition (MBRP)

MB/Frame slice GOP Task

platform Multicore DSP

TMS320C6472

(5 cores for

encoding)

167-core

asynchronous

array of simple

processors

PC with a P4

1.7GHz processor

4 cores

Pentium 4

processor

running at 2.8

GHz

quad

TMS320C6201

DSP system

3 Microblaze

soft cores

based on

XILINX

FPGA

NVIDEA’s

GPU using

CUDA with

448 cores

Reference

software and

encoding

parameters

LETI’s H264

codec, baseline

profile, ME

algorithm is

LDPS, search

range=16,

Number of

reference

frame=1, R-D

optimization is

not used,

entropy coding

is CAVLC.

JM baseline

profile, search

range=3, ME

algorithm is

Diamond

Search,

Number of

reference

frame=1,

entropy coding

is CAVLC.

JM 10.2 baseline

profile, ME

algorithm is the

Full search,

Number of

reference

frame=1,

R-D optimization

is used, entropy

coding is

CAVLC.

JM9.0, one

reference

frame for MV,

search

range=10, R-D

optimization is

used, entropy

coding is

CAVLC.

H263/MPEG4

baseline

profile, search

range=16, ME

algorithm is

diamond

search, entropy

coding is VLC.

AVS

reference code

RM5.2,

ME algorithm

is full search,

entropy

coding is

CAVLC.

X264 codec,

search

range=32,

ME

algorithm is

MRMW,

Number of

reference

frame=1,

entropy

coding is

CAVLC.

Encoding

speed (f/s)

98 f/s for CIF,

32 f/s for SD

and 12 f/s for

HD

21 f/s for VGA

(640 x 480)

0.6 f/s for CIF and

0.15 f/s for SD

0.58 f/s for CIF 30 f/s only for

CIF resolution

3 f/s for QCIF 30 f/s for

HD720p

Distortion

PSNR/bitrate

No yes No No yes No Yes

15

Other works achieve real-time processing for low

resolution but not yet for higher resolutions. GPU’s

implementation allows achieving real-time for HD

resolution thanks to the great number of processing cores

but in the other side, this proposed scheme induces some

rate distortion (PSNR degradation and bitrate increment).

GPU platform remains an interesting solution to meet real-

time requirement for high computational applications but it

is not intended for embedded systems that require low

power consumption. Our implementation ensures a good

encoding scalability without inducing any rate distortion.

8 Conclusion

In this paper, an optimized implementation of the

H264/AVC encoder on a multicore DSP TMS320C6472

was presented. The Frame Level parallelism approach was

used to accelerate encoding speed. Hiding communication

overhead allowed enhancing the FLP implementation and

improving the speedup factors. Experiments of enhanced

FLP on 5 DSP cores running at 700 MHz showed that real-

time was achieved by reaching 98 f/s for CIF resolution and

32 f/s for SD resolution as encoding speeds. Our parallel

implementation saved up to 77% of encoding time for HD

resolution and ensured a good encoding speedup factors

ranging from 4.11 to 4.52 without providing any quality

degradation or bitrate increase. Our work validated the

capability of real-time processing, even for high complexity

applications, by smart camera systems if they are based on

embedded multicore DSP. As perspectives, we will try to

reach real-time encoding for HD resolution by

implementing our approach on the latest generation of

Texas Instruments DSP (TMS320C6678). It includes 8

DSP cores each running at 1.25 GHz, giving a large

possibility to achieve real-time constraint for HD

resolution. Also, two partitioning methods could be

combined in order to improve encoding efficiency. Power

consumption of our multicore implementation will be taken

into account to more evaluate our embedded encoder. All

this work will be reusable to implement the new HEVC-

H265 video standard. This knowledge will be use for our

next task: H265 real-time implementation on the

TMS320C6678 DSP.

Acknowledgements

This work is fruit of cooperation between Sfax National

School of Engineers and ESIEE Engineering PARIS. It is

supported by the French ministries of Foreign Affairs and

Tunisian ministry for Higher Education and Scientific

Research in the context of Hubert Curien Partnership (PHC

UTIQUE) under the CMCU project number 12G1108.

References

[1] Smart camera [Online].Available:
http://en.wikipedia.org/wiki/Smart_camera

[2] Yu Shi, Serge Lichman, “Smart Cameras: A Review,”
[Online].Available:
http://www.nicta.com.au/__data/assets/pdf_file/0004/16456/s
mart_camera_review.pdf

[3] 8-Megapixel OEM Smart Camera Module with Removable
Storage [Online].Available:
http://www.mosaicengineering.com/docs/OEM-SCM.2010-
01-26.pdf

[4] Smart Camera manufacturers and products links
[Online].Available:
http://www.smartcamera.it/links.htm#Top

[5] Freescale Machine Vision and Camera[Online].Available:
http://www.freescale.com/webapp/sps/site/application.jsp?co
de=APLMAVISMCA

[6] TMS320C66x high-performance multicore DSPs for video
surveillance [Online].Available:
http://www.ti.com/lit/ml/sprt643/sprt643.pdf

[7] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T
VCEG, "Draft ITU-T Recommendation and Final Draft
international Standard of Joint Video Specification (ITU-T
Rec. H.264 ISO/IEC 14496-10 AVC)", JVT-G050, 2003.

[8] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,
"Overview of the High Efficiency Video Coding (HEVC)
Standard", IEEE Trans. Circuits and Systems for Video
Technology, Vol. 22, No. 12, pp. 1649-1668, Dec. 2012.

[9] Zhibin Xiao; Le, S.; Baas, B., "A fine-grained parallel
implementation of a H.264/AVC encoder on a 167-processor
computational platform," Signals, Systems and Computers
(ASILOMAR), 2011 Conference Record of the Forty Fifth
Asilomar Conference on , vol., no., pp.2067,2071, 6-9 Nov.
2011. doi: 10.1109/ACSSC.2011.6190391

[10] Sun, S.; Wang, D. & Chen, S. Perrott, R.; Chapman, B.;
Subhlok, J.; Mello, R. & Yang, L. (Eds.), “A Highly Efficient
Parallel Algorithm for H.264 Encoder Based on Macro-Block
Region Partition,” High Performance Computing and
Communications, Springer Berlin Heidelberg, 2007, 4782,
577-585

[11] H264/AVC software Joint Model JM:
http://iphome.hhi.de/suehring/tml/download/old_jm/

[12] Zhuo Zhao; Ping Liang, "A Highly Efficient Parallel
Algorithm for H.264 Video Encoder," Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on , vol.5, no., pp.V,V, 14-19
May 2006. doi: 10.1109/ICASSP.2006.1661319

[13] Yen-Kuang Chen; Tian, X.; Steven Ge; Girkar, M., "Towards
efficient multi-level threading of H.264 encoder on Intel
hyper-threading architectures," Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th
International , vol., no., pp.63,, 26-30 April 2004
doi: 10.1109/IPDPS.2004.1302990

[14] S.Sankaraiah, H.S.Lam, C.Eswaran and Junaidi Abdullah,
“GOP Level Parallelism on H.264 Video Encoder for
Multicore Architecture” International Conference on
Circuits, System and Simulation(ICCSS 2011), IPCSIT vol.
7, pp.127-132, May 2011, IACSIT Press, Singapore,
ISSN:2010-460X, ISBN : 978-981-08-8638-7,Bangkok,27-
28,May 2011.

[15] S. Sankaraiah ,Lam Hai Shuan, C. Eswaran and Junaidi
Abdullah , “Performance Optimization of Video Coding
Process on Multi-Core Platform Using Gop Level
Parallelism” International Journal of Parallel
Programming,ISSN:1573-7640, DOI 10.1007/s10766-013-
0267-4, September2013.

[16] Rodriguez, A.; Gonzalez, A.; Malumbres, M.P.,
"Hierarchical Parallelization of an H.264/AVC Video
Encoder," Parallel Computing in Electrical Engineering,
2006. PAR ELEC 2006. International Symposium on , vol.,
no., pp.363,368, 13-17 Sept. 2006. doi:
10.1109/PARELEC.2006.42.

[17] Shenggang Chen; Shuming Chen; Huitao Gu; Hu Chen;
Yaming Yin; Xiaowen Chen; Shuwei Sun; Sheng Liu;
Yaohua Wang, "Mapping of H.264/AVC Encoder on a
Hierarchical Chip Multicore DSP Platform," High
Performance Computing and Communications (HPCC), 2010
12th IEEE International Conference on , vol., no.,
pp.465,470, 1-3 Sept. 2010. doi: 10.1109/HPCC.2010.82.

[18] Ming-Jiang Yang; Jo-Yew Tham; Rahardja, S.; Da-Jun Wu,
"Real-time H.264 encoder implementation on a low-power
digital signal processor," Multimedia and Expo, 2009. ICME
2009. IEEE International Conference on , vol., no.,
pp.1150,1153, June 28 2009-July 3 2009. doi:
10.1109/ICME.2009.5202703

http://en.wikipedia.org/wiki/Smart_camera
http://www.nicta.com.au/__data/assets/pdf_file/0004/16456/smart_camera_review.pdf
http://www.nicta.com.au/__data/assets/pdf_file/0004/16456/smart_camera_review.pdf
http://www.mosaicengineering.com/docs/OEM-SCM.2010-01-26.pdf
http://www.mosaicengineering.com/docs/OEM-SCM.2010-01-26.pdf
http://www.smartcamera.it/links.htm#Top
http://www.freescale.com/webapp/sps/site/application.jsp?code=APLMAVISMCA
http://www.freescale.com/webapp/sps/site/application.jsp?code=APLMAVISMCA
http://www.ti.com/lit/ml/sprt643/sprt643.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/suehring/tml/download/old_jm/

16

[19] Zrida, H.K.; Jemai, A.; Ammari, A.C.; Abid, M., "High level
H.264/AVC video encoder parallelization for multiprocessor
implementation," Design, Automation & Test in Europe
Conference & Exhibition, 2009. DATE '09. , vol., no.,
pp.940,945, 20-24 April 2009. doi:
10.1109/DATE.2009.5090800

[20] Antonio Rodrigues, Nuno Roma, and Leonel Sousa. 2010.
p264: open platform for designing parallel H.264/AVC video
encoders on multi-core systems. In Proceedings of the 20th
international workshop on Network and operating systems
support for digital audio and video (NOSSDAV '10). ACM,
New York, NY, USA, 81-86.
DOI=10.1145/1806565.1806586
http://doi.acm.org/10.1145/1806565.1806586

[21] Olli Lehtoranta, Timo Hämäläinen, Ville Lappalainen, Juha
Mustonen, “Parallel implementation of video encoder on
quad DSP system,” Microprocessors and Microsystems,
Volume 26, Issue 1, Pages 1-15, 25 February 2002.

[22] Bruno Alexandre de Medeiros, ”Video coding on multicore
graphics processors (GPUs),” Dissertation submitted to
obtain the Master Degree in Information Systems and
Computer Engineering, High Institute of Techniques,
Technical University of Lisboa, November 2012.

[23] Fang Ji; Xing-yuan Li; Chang-long Yang, "An Algorithm
Based on AVS Encoding on FPGA Multi-Core
Pipeline," Computational and Information Sciences (ICCIS),
2013 Fifth International Conference on , vol., no.,
pp.1521,1524, 21-23 June 2013
doi: 10.1109/ICCIS.2013.400

[24] Xiulian Peng; Jizheng Xu; You Zhou; Feng Wu, "Highly
Parallel Line-Based Image Coding for Many Cores," Image
Processing, IEEE Transactions on , vol.21, no.1, pp.196,206,
Jan. 2012. doi: 10.1109/TIP.2011.2159986

[25] Huayou Su, Mei Wen, Nan Wu, Ju Ren, and Chunyuan
Zhang, “Efficient Parallel Video Processing Techniques on
GPU: From Framework to Implementation,” The Scientific
World Journal, vol. 2014, Article ID 716020, 19 pages, 2014.
doi:10.1155/2014/716020

[26] A. O. Adeyemi-Ejeye and S. Walker, “4kUHD H264
Wireless Live Video Streaming Using CUDA,” Journal of
Electrical and Computer Engineering, vol. 2014, Article ID
183716, 12 pages, 2014. doi:10.1155/2014/183716

[27] Wajdi Elhamzi, Julien Dubois, Johel Miteran, Mohamed
Atri, Barthelemy Heyrman, Dominique Ginhac, Efficient
smart-camera accelerator: A configurable motion estimator
dedicated to video codec, Journal of Systems Architecture,
Volume 59, Issue 10, Part A, November 2013, Pages 870-
877, ISSN 1383-7621

[28] TMS320C6472 datasheet, [Online].Available:
http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf

[29] Multicore DSP vs GPUs, [Online].Available:
http://www.sagivtech.com/contentManagment/uploaded
Files/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_dis
tribution.pdf

[30] TMS32C6472 low power consuption, [Online].Available:
http://www.ti.com/lit/wp/spry130/spry130.pdf

[31] Werda, I.; Dammak, T.; Grandpierre, T.; Ayed, M. &
Masmoudi, N.; “Real-time H.264/AVC baseline decoder
implementation on TMS320C6416,” Journal of Real-Time
Image Processing, Springer-Verlag, 2012, 7, 215-232, 2012.

[32] Bahri, N., Werda, I., Grandpierre, T., Ben Ayed, M.,
Masmoudi, N., & Akil, M. (2013). Optimizations for Real-
Time Implementation of H264/AVC Video Encoder on DSP
Processor. International Review on Computers &
Software,8(9).

[33] Xiph.org Video Test Media Online].Available:
https://media.xiph.org/video/derf/

[34] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG
organizations [Online].Available: http://www.itu.int/en/ITU-
T/studygroups/com16/video/Pages/jvt.aspx

[35] Open source computer vision library [Online].Available:
http://opencv.org/

[36] TI Network Developer's Kit (NDK) v2.21 User's Guide,
[Online].Available:
http://www.ti.com/lit/ug/spru523h/spru523h.pdf

[37] TMS320C6472 Chip Support Library API reference Guide
[Online].Available: http://software-
dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/i
ndex_FDS.html

[38] Throughput Application Report for the TMS320C6472 DSP
[online]. Available:
http://www.ti.com/lit/an/spraay0a/spraay0a.pdf

http://doi.acm.org/10.1145/1806565.1806586
http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf
http://www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
http://www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
http://www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
http://www.ti.com/lit/wp/spry130/spry130.pdf
https://media.xiph.org/video/derf/
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx
http://opencv.org/
http://www.ti.com/lit/ug/spru523h/spru523h.pdf
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html
http://www.ti.com/lit/an/spraay0a/spraay0a.pdf

