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Abstract The latest generation of multicore Digital 

Signal Processors (DSP), their high computing power, 

low consumption and integrated peripherals will allow 

them to be embedded in the next generation of smart 

camera. Such DSPs allow designers to evolve the vision 

landscape and simplify the developer's tasks to run more 

complex image and video processing applications 

without the need to burden a separate Personal Computer 

(PC). This paper explains how exploiting the computing 

power of a multicore DSP TMS320C6472 in order to 

implement a real-time H264/AVC video encoder. This 

work prepares the way to the implementation of the new 

High Efficiency Video Coding standard (HEVC-H265). 

To improve encoding speed, the enhanced Frame Level 

Parallelism (FLP) approach is presented and 

implemented. A real-time fully functional video demo is 

given taken into account video capture and bitstream 

storage. Experimental results show how we efficiently 

exploit the potentials and the features of the multicore 

platform without inducing PSNR degradation or bitrate 

increase. The enhanced FLP using five DSP cores 

achieves a speedup factor of 4.3 times in average 

compared to a mono-core processor implementation for 

Common Intermediate Format (CIF 352x288), Standard 

Definition (SD 720x480) and High Definition (HD 

1280x720) resolutions. This optimized implementation 

allows us to exceed the real-time by reaching an 

encoding speed of 98 f/s (frame/second) and 32 f/s for 

CIF and SD resolutions respectively and saves up to 77% 

of encoding time for the HD resolution. 

Keywords H264/AVC encoder, DSP, multi-core, Frame 

Level Parallelism, real-time. 

1 Introduction  

Nowadays, smart cameras or machine vision solutions 

[1], [2] need to run complex image and video processing 

applications on growing amounts of data while meeting 

hard real-time constraints. New technologies of 

programmable processors such multicore DSPs, 

embedded heterogeneous systems (ARM-DSP [3], DSP-

FPGA, ARM-FPGA), offer a very promising solution for 

these applications that require high computing 

performances. They are characterized by a high 

processing frequency with low power consumption 

compared to General Purpose Processor (GPP) or 

Graphic Processor Unit (GPU). Several manufactures [4] 

such as Freescale [5] and Texas Instruments (TI) [6] 

solve the challenges of smart cameras with their high 

performance multicore DSP processors. Exploiting these 

embedded technologies, smart cameras are changing the 

vision landscape and pushing developers to run several 

applications without the need to use any connected PC. 

In the area of video application, compression represents 

an interesting task among the main applications of smart 

camera or machine vision in addition to other tasks such 

object detection, tracking, recognition…etc. The 

commercialized encoding IPs allow real-time 

performance but lack in flexibility. In fact, they cannot 

be upgraded to follow the latest protocol enhancements 

and the latest advances in video compression. Actually, a 

new video coding standard is appeared on the market 

which is the HEVC-H265 but in the side, there are 

several smart cameras still work until now with old video 

coding standard as motion JPEG or MPEG4. So it is time 

now to follow developments in this field. 

DSPs offer software flexibility that is important to 

allow upgradability. They allow us to build highly 

flexible and scalable cameras that can follow the latest 

advances in video compression. Encoder parameters can 

also be finely tuned depending on the application's 

requirements. They are also characterized by relatively 

low software development cost and time-to-market 

reduction compared to ASIC development or FPGA 

implementation that requires a tremendous VHDL 

expertise which may not deal with time-to-market 

constraint. 

In this context, the TI’s high performance multicore 

DSP processor TMS320C6472 is used in order to 

achieve a real-time implementation for the H264/AVC 

[7] video encoder. This work will be our start point for 

the new video standard HEVC [8]. Effectively; since 

HEVC encoder keeps the majority of H264/AVC 

features (GOPs, frames, and slices structures) our 

proposed approach will also benefit for our future H265 

implementation.  

H264 encoder is characterized by high coding 

efficiency comparing with previous standards. However, 

this efficiency is accompanied by a high computational 

complexity that requires a high-performance processing 

capability to satisfy real-time constraint (25 to 30 f/s). 
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When moving to high resolutions, encoding time is 

drastically increased. Frequency limitation of embedded 

mono-core processor makes it hard to achieve real-time 

encoding especially for HD resolutions. Using parallel 

and multicore architectures will be crucial to reduce the 

processing time of H264/AVC encoder.  

Several works have been published exploiting the 

potential parallelism of H264/AVC standard by applying 

a functional partitioning algorithms, data partitioning 

algorithms or both. Multi-processor, multi-core, multi-

threading encoding system and parallel algorithms have 

been discussed in many papers [9] to [27]. This paper 

presents the Frame Level Parallelism (FLP) approach and 

describes its complete implementation in a H.264/AVC 

encoder using a multicore DSP TMS320C6472.  

The remainder of this paper is organized as follows: 

next section provides an overview of data dependencies 

and parallelism in H.264/AVC standard. Section 3 details 

the related works on the parallel implementations of 

H264/AVC encoder. The internal architecture of our 

multicore DSP TMS320C6472 is described in Sect.4.  

Section 5 presents our optimized implementation of 

H264 encoder on a single DSP core. Section 6 focuses on 

the FLP algorithm implementation on five DSP cores. It 

details the whole coding chain (image capture, bitstream 

transfers), and finally gives experimental results. The 

best approach, based on the enhanced FLP is detailed in 

Sect.7 which also includes experimental results. Finally, 

section 8 concludes this paper and presents some 

perspectives. 

2 Overview of data dependencies and parallelism in 

H264/AVC encoder  

The H.264/AVC encoder baseline profile is a video 

compression standard used to reduce the video data 

amount in order to overcome the limitation of 

transmission bandwidth and the huge amount of memory 

requirement for storing high definition video sequences. 

This standard consists of several functions in order to 

generate the compressed bitstream of the input video as 

shown in Fig.1. 
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Fig. 1 H264/AVC video encoder strucure 

This standard divides a video sequence into a hierarchical 

structure with six levels as shown in Fig. 2. The top level 

of this structure is the sequence that contains one or more 

groups of pictures (GOP). Each GOP is composed of one 

or more frames. Finally, the frames are divided into one 

or more independent slices, subdivided themselves into 

macroblocks of 16x16 pixels (MB) and blocks of 4x4 

pixels. Each MB undergoes two prediction types: 1) intra 

prediction: it consists of performing intra16x16 and 

intra4x4 prediction modes in order to reduce spatial 

redundancies in the current frame. 2) inter prediction: it 

consists of  determining the motion vector of the current 

MB relative to its position in the reference frames. It 

includes 7 prediction modes in order to reduce temporal 

redundancies existed among successive frames. A mode 

decision is then performed to select the best prediction 

mode. Integer transform and quantification modules are 

performed on the best predicted MB in order to keep only 

the most significant coefficients. An entropy coding is 

finally performed to generate the compressed bitstream. 

A decoding chain is included in the encoder structure in 

order to keep the reconstructed frame that will be filtered 

with a de-blocking filter in order to eliminate artifacts. 

The reconstructed frame will be used as a reference for 

the next frames to perform motion estimation.  
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Fig. 2 Hierarchical decomposition of an H.264 video sequence 

According to functions organization and hierarchical 

sequence structure in H.264/AVC encoder, there are 

mainly two partitioning families: 

Task-level parallelization (TLP) or functional 

partitioning: it consists of splitting the encoder into 

several steps, identify them into a different group of tasks 

equal to the number of threads available on the system 

and run these groups of tasks simultaneously as a 

pipeline. Thus, the appropriate functions that could be 

grouped together to be processed in parallel and the other 

functions that will be executed in serial to respect data 

dependencies should be efficiently chosen. Also, tasks 

computational complexities should be taken into 

consideration in order to maximize the encoding gain and 

ensure a workload balance between the parallel tasks. 

Finally, when grouping functions, synchronization 

overhead should be minimized as much as possible by 

eliminating data dependency between the different 

function blocks. For example intra prediction modes (13 
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modes) and inter prediction modes (7 modes) could be 

processed in parallel because no dependencies existed 

among them. In the other side, integer transform, 

quantification and entropy coding have to be processed in 

serial way given the dependencies among them. 

Data-level parallelization (DLP) or data partitioning: 

it exploits the hierarchical data structure of H264/AVC 

encoder by simultaneously processing several data levels 

on multiple processing units. DLP is limited by data 

dependencies among different data units. 

For H264/AVC encoder, there are two major types of 

data dependencies: 

Spatial dependencies: they exist amongst macroblocks 

within the current encoding frame. In fact, to perform 

intra prediction modes, motion vector prediction and 

reconstructed MB filtering for the current MB, such data 

are required from its neighboring MBs (Left, Top Left 

TOP and Top right) already encoded as shown in Fig. 3. 

So, the current MB could be encoded only if its 

neighboring MBs have been encoded. 
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Fig. 3 spatial dependencies for the current MB 

Temporal dependency: to determine the motion vector 

of the current MB in relative to its position in the 

previous encoded frames, a motion estimation (ME) 

algorithm such as MB matching is performed. The search 

of the corresponding MB is restricted in a specific area 

called the "search window" in the reference frames (the 

previous encoded frames) instead of scanning the whole 

frame in order to reduce the computing complexity. So a 

partial dependency among MBs of successive frames is 

imposed and limited to the search windows. 

As data partitioning is restricted by these data 

dependencies, several points could be noticed. No 

dependencies existed among different GOPs because 

each GOP is started by an intra frame “I” where only 

intra prediction is performed, so dependencies is existed 

only among MBs in the same frame. The remaining 

frame of the GOP are a predicted frames “P” where both 

intra and inter prediction are performed. Hence, several 

GOPs could be encoded in parallel. This method is called 

GOP Level Parallelism [14]. A partial dependency is 

existed between successive frames of the same GOP due 

to motion estimation in the search window. Thus, 

multiple frames could also be encoded in pipeline once 

the search window is encoded and this method is called 

Frame Level Parallelism [12]. When dividing frame into 

independent slices, several slices could be processed in 

parallel and this approach is called slice level parallelism 

[13]. Finally, in the same frame, multiple MBs could be 

encoded at the same time once its neighboring MBs are 

already encoded. This scheme is called MB level 

Parallelism [12]. 

3 Related works 

To overcome the high complexity of H264/AVC encoder 

and to resolve the problem of mono-core processor 

frequency limitation, many researchers have been 

worked on the parallelism of H264/AVC encoder in order 

to meet the real-time constraint and achieve a good 

encoding speedup which can be presented by the 

following equation. 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔
                            (1) 

 Several implementations exploiting multi-threads, multi-

processors and multicore architectures are discussed in 

many papers: 

Zhibin Xiao et al. [9] exploit task level parallelism 

approach. They partition and map the dataflow of 

H.264/AVC encoder to an array of 167-core 

asynchronous array of simple processors (AsAP) 

computation platform coupled with two shared memories 

and a hardware accelerator for motion estimation. They 

process the luminance and the chrominance components 

in parallel. Intra4x4 modes and intra16x16 modes are 

calculated in parallel. Only 3 modes for intra4x4 instead 

of 9 and 3 modes for intra16x16 are considered to reduce 

the top right dependency. Eight processors are used for 

transform and quantification and 17 processors for 

CAVLC. A hardware accelerator is used for motion 

estimation. Despite all these hardware resources, a real-

time implementation is not achieved. The presented 

encoder is capable of encoding VGA (640 x 480) video at 

21 frames per second (fps). Reducing the number of 

candidate modes for intra4x4 and intra16x16 induces 

visual quality degradation and bitrate increase.  

Sun et al. [10] implement a parallel algorithm for 

H.264 encoder based on MB region partition (MBRP). 

They split the frame into several MB regions composed 

by adjoining columns of MBs. Then, they map the MB 

regions onto different processors to be encoded satisfying 

data dependencies in the same MBs row. Simulation 

results on 4 processors running at 1.7 GHz show that the 

proposed partitioning achieves a speedup by a factor of 

3.33 without any rate distortion (Quality, Bitrate) 

compared to H264 software JM10.2 [11]. In the other 

side, they are still far from real-time implementation that 

requires at least 25 f/s. They can encode only 

1frame/1.67s for CIF resolution and 1frame/6.73s for SD 

resolution. 

Zhuo Zhao et al. [12] propose a new wave-front 

parallelization method for H.264 encoder. They mix two 

partitioning methods: MB row level parallelism and 

frame level parallelism. All MBs in the same MB row are 

processed by the same processor or thread to reduce data 

exchanges between processors. MBs in different frames 

can be processed concurrently if the reconstructed MBs 
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in the reference frame forming the search window are all 

available. They implement this method using JM9.0 on a 

Pentium 4 processor running at 2.8 GHz. Simulations on 

4 processors prove that a speedup by a factor of 3 is 

achieved (3.17 for QCIF resolution (Quarter CIF 

176x144) and 3.08 for CIF). Encoding quality was not 

changed and it remains the same as the original software 

JM 9.0. In the other side, the runtime is far from real-

time implementation. In fact, only 1frame/1.72s is 

encoded for CIF resolution. 

Yen-Kuang et al. [13] parallelize the H.264 encoder 

exploiting thread-level parallelism using OpenMP 

programming model. Slice level partitioning is 

performed on 4 Intel Xeon™ processors with Hyper-

Threading Technology. Results show a speedups ranging 

from 3.74x to 4.53x. The drawback of slice parallelism is 

that it affects the rate distortion performance. Indeed, it 

provides PSNR degradation and an important increase in 

bitrate especially when the frame is decomposed into 

several independent slices. 

S.Sankaraiah et al. [14] [15] apply the GOP level 

parallelism using multithreading algorithm in order to 

avoid data dependencies. Each GOP is handled by a 

separate thread. Frames in each GOP are encoded by two 

threads: I and P frames by the first thread and B frames 

by the second thread. The obtained speedup using dual 

and quad core processors are 5.6 and 10 respectively. 

The drawback of GOP level parallelism is its very high 

encoding latency that is not compatible with video 

conference applications. 

Rodriguez et al. [16] go a step further and propose an 

implementation of H.264 encoder using GOP level 

parallelism combined with slice level parallelism on a 

clustered workstations using Message Passing Interface 

(MPI). The first approach speeds up the processing time 

but provides a high latency and the second approach is 

used to reduce this latency by dividing each frame into 

several slices and distributing these slices to computers 

belonging to a subgroup of computers. With this 

technique, the encoding latency is relatively reduced. 

However, increasing the number of slices per frame has 

significant adverse effects on the rate distortion (bitrate 

increment). Also, clustered workstations are a costly 

solution and they are not intended for embedded 

applications. 

Shenggang Chen et al. [17] introduce an 

implementation of an on-chip parallel H.264/AVC 

encoder on hierarchical 64-cores DSP platform. This 

platform consists of 16 super nodes (4 DSP cores for 

each node). 2D WaveFront algorithm for macroblock 

level parallelism is used and one macroblock is assigned 

to one super node. Subtasks for encoding one 

macroblock such as motion estimation, intra prediction 

and mode decision are further parallelized to keep busy 

the four DSP cores that form a node. Speedup factors of 

13, 24, 26 and 49 are achieved for QCIF, SIF (352x240), 

CIF and HD sequences respectively. The proposed 

wavefront parallel algorithm does not introduce any 

quality loss; however, the used CABAC-based bitrate 

estimation and parallel CABAC evolutional entropy 

coder cause a bitrate increment. Real-time processing is 

not given in this paper. 

Ming-Jiang Yang et al. [18] implement the 

H264/AVC encoder on the dual-core DSP processor 

ADSP-BF561 chipset using functional partitioning. Core 

A of the BF561 processor is dedicated to perform mode 

decision, intra prediction, motion compensation, integer 

transform (IT), quantization, de-quantization, inverse 

integer transform, and entropy encoding. Core B is 

assigned to perform in-loop filtering, boundary 

extension, and half-pel interpolation. Core A and core B 

execute tasks in two pipeline stages. The proposed 

encoder system achieves real-time encoding for CIF 

resolution but not for higher resolutions (VGA, SD and 

HD). 

Zrida et al. [19] present a parallelization approach for 

embedded Systems on Chip (SoCs). It is based on 

exploration of task and data levels parallelism, the 

parallel Kahn process network (KPN) model of 

computation and the YAPI programming C++ runtime 

library. The used SOC platform relies on 4 MIPS 

processors. Simulation results of this work show that a 

speedup of 3.6 is achieved for QCIF format but real-time 

encoding is not reached even for low resolutions (7.7 f/s 

for QCIF format). 

António Rodrigues et al. [20] implement the 

H264/AVC encoder on a 32-core Non-Uniform Memory 

Access (NUMA) computational architecture, with eight 

AMD 8384 quad-core chip processors running at 

2.7GHz. Two parallelism levels are combined: slice level 

and macroblock level.  A multi-threading algorithm 

using openMP is used for JM software. The frame is 

decomposed into slices; each slice is processed by a 

group of cores. Several MBs in the same slice are 

encoded in parallel with respecting of data dependencies 

by the different cores of the group. The achieved speedup 

using the whole set of 32 cores is between 2.5 and 6.8 for 

4CIF video (704 × 576). These speedups are not 

significant compared to the number of cores used for 

encoding. Using a MB level Parallelism requires that 

data have to be shared which leads to a memory bottleneck 

and higher latency. Also, increasing the number of slices 

introduces a bitrate distortion. Real-time is not noticed in 

this work.  

Olli lehtoranta et al. [21] implement a row-wise data 

parallel video coding method on the quad TMS320C6201 

DSP system. The frame is decomposed into slices by 

row-wise and each slice is mapped to a DSP slave. A 

DSP master is devoted to swap data to/from DSP slaves.  

The real-time 30f/s is reached only for CIF resolution but 

not yet for higher resolutions. The main drawback of this 

approach is an increase in bitrate and PSNR degradation 

because of using slice level parallelism. 

In [22], author develops a parallel implementation of 

the intra-prediction H.264/AVC module by using the 

computational resources of a GPU and exploiting the 

Compute Unified Device Architecture (CUDA) 

programming model. They apply two partitioning 
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methods: 1) data partitioning by processing the 

luminance Y and the two chroma components Cr, Cb in 

different parallel tasks. 2) Task partitioning by 

processing the intra prediction 16x16, intra prediction 

4x4 and chroma intra prediction in parallel. This 

implementation of the intra prediction module achieved a 

speedup of 11x, relatively to the sequential 

implementation of the reference software but as we know 

the inter prediction is the most important module in the 

H264/AVC encoder which takes the lion’s share of 

processing time. So, preferably, this module should be 

accelerated in addition to intra prediction. Moreover, 

processing chrominance data in parallel with the 

luminance component does not give a significant 

speedup if we know that chrominance processing is 

negligible relatively to luminance processing. Finally, the 

luminance and chrominance processes are not totally 

independent; thus; a dependency is existed among the 

two components during filtering and entropy coding 

processes which leads to a high latency. 

Fang Ji et al. [23] propose a H264/AVC encoder on 

an MPSOC platform using GOP level parallelism 

approach. They build three Microblaze soft cores based 

on XILINX FPGA. A main processor is devoted to 

prepare the frames into the shared memory. Then, each 

processor among the remaining coprocessors will encode 

its appropriate GOP. Experiments show that the average 

speedup is 1.831. The problem of the GOP approach is 

its higher latency. Real-time is not achieved. This 

solution encodes only 3 f/s for QCIF resolution. 

Xiulian Peng et al. [24] propose a pure line-by-line 

coding scheme (LBLC) for intra frame coding. The input 

image is processed line by line sequentially, and each 

line is divided into small fixed-length segments. The 

encoding of all segments from prediction to entropy 

coding is completely independent and concurrent at 

many cores. Results on a general-purpose computer 

illustrate that the proposed scheme can get a 13.9 as 

speedup factor with 15 cores but in the other side, this 

method affects the rate distortion because of discarding 

the Left dependency for each MB. 

Huayou Su et al [25] propose a parallel framework 

for H.264/AVC based on massively parallel architecture 

implemented on NVIDEA’s GPU using CUDA. They 

present several optimizations to accelerate the encoding 

speed on GPU. A parallel implementation of the inter 

prediction is proposed based on a novel algorithm 

MRMW (Multi-resolutions Multi-windows) that consists 

of using the motion trend of a lower resolution frame to 

estimate that of the original frame ( higher resolution). 

The steps of MRMW are parallelized with CUDA on the 

different cores of the GPU. Also they perform a 

multilevel parallelism for intra-coding. For that a multi-

slice method is introduced. Each frame is partitioned into 

independent slice. At the same time, the wave-front 

method is adopted for parallelizing the MBs in the same 

slice. Some dependencies within MBs are not respected 

to maximize the parallelism. Moreover, CAVLC coding 

and filtering processes are also parallelized by 

decomposing these modules into several tasks. 

Experimental results show that about 20 times the 

speedup can be obtained for the proposed parallel method 

when compared to the reference program. The presented 

parallel H.264 encoder can satisfy the requirement of 

real-time HD encoding of 30 fps. In the other side, this 

implementation affects the visual quality by inducing a 

PSNR degradation ranging from 0.14 dB to 0.77 dB and 

a little increase in bitrate because of using multi-slice 

parallelism and some dependencies are not respected. 

O. Adeyemi et al [26] presents a 4kUHD video 

streaming over wireless 802.11n. They perform the entire 

encoding chain including 4K camera capture, YUV color 

space conversion, H264 encoding using CUDA on 

NVIDIA Quadro 510 GPU and real-time live streaming. 

To speed up the encoding, several modules are 

parallelized such intra and inter prediction modules by 

exploiting a dynamic parallel motion algorithm and a 

novel intra prediction mode. Also, they used a Zero-

Copy memory allocation technique to reduce memory 

copy latencies between the host memory (CPU) and the 

GPU memory. Experiments confirm that 4kUHD real-

time encoding for live streaming at low bitrates is 

possible. A little deviation on visual quality is induced. 

Despite this, GPUs are a costly solution and they are not 

suitable for embedded applications because of high 

power consumption compared to other platforms. 

Wajdi Elhamzi et al [27] present a configurable H264 

motion estimator dedicated to video codec on a smart 

camera accelerator based on Virtex6 FPGA component. 

They propose a flexible solution to adjust the video 

stream transferred by the smart camera. The accelerator 

is able to support several search strategies at IME 

(Integer Motion Estimation) stage and different 

configurations for FME (fractional Motion Estimation) 

stage. Experiments show that the obtained FPGA based 

architecture can process IME on 720x576 video streams 

at 67 fps using full search strategy. FPGA solution 

remains an interesting way to achieve real-time 

processing but when moving to implement the whole 

H264 encoder, a huge FPGA surface and a lot of design 

and compilation time with tremendous VHDL expertise 

are required which may not deal with time-to-market 

constraint. Finally, the low hardwired block frequency 

and bus bandwidth for data transfers between processor 

and accelerator represent the major drawbacks of FPGA 

implementations. 

4 DSP platform description 

Software flexibility, low power consumption, time-to-

market reduction, and low cost make DSPs an attractive 

solution for embedded systems implementations and high 

performance applications. Motivated by these merits and 

encouraged by the great evolution of DSP architectures, 

we chose to implement the H264/AVC encoder on a low 

cost multicore DSP TMS320C6472 to profit from high 

processing frequency and an optimized architecture in 

order to achieve real-time embedded video encoder. 
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TMS320C6472 DSP [28] belongs to the latest generation 

of multicore DSPs made by Texas Instrument. Low 

power consumption and a competitive price tag make the 

TMS320C6472 DSP ideal for high-performance 

applications and suitable for many embedded 

implementations. Several benchmarks are performed by 

Texas Instruments to compare between DSP, General 

Purpose Processors (GPP) and Graphic Processor Unit 

(GPU) [29] [30]. These benchmarks demonstrate that the 

C6472 consumes 0.15 mW/MIPS (Million instructions 

per second) at 3 GHz. Also, at 3.7 watts per device, it 

offers even greater power savings compared to GPP in 

the same performance range. When the performance is 

distributed over power, the DSP is 4x more better than 

GPU and 18x than GPP.  

As presented in Fig. 4, six C64x + DSP cores, very 

long instruction word (VLIW) architecture, 4.8 M-Byte 

(MB) of memory on chip, Single Instruction Multiple 

Data (SIMD) instruction set and a frequency of 700 MHz 

for each core are combined to deliver 33600 MIPS 

performance. 

 

Fig. 4 Internal architecture of TMS320C6472 DSP 

Each C64x+ core integrates a large amount of on-chip 

memory organized as a two-level memory system. The 

level-1 (L1) program and data memories on this C64x+ 

core are 32 K-Byte (KB) each. This memory can be 

configured as mapped RAM, cache, or any combination 

of the two. The level 2 (L2) memory is shared between 

program and data space and is 608 KB in size. L2 

memory can also be configured as mapped RAM, cache, 

or any combination of the two. In addition to L1 and L2 

memory dedicated to each core, the six cores also share 

768 KB of L2 shared memory. Shared L2 memory is 

managed by a separate controller and can be configured 

as either program or data memory. This large amount of 

on-chip memory may avoid access the external DDR2 

memory, therefore reducing the power dissipation and 

accelerating algorithms processing since internal memory 

is faster than external memory. Performance is also 

enhanced using the EDMA (Enhanced Direct Memory 

Access) controller which is able to manage memory 

transfers independently from the CPU. Therefore, no 

additional overhead is caused when large data blocks are 

moved between internal and external memory. 

TMS320C6472 DSP supports different communication 

peripherals as Gigabit Ethernet for Internet Protocol (IP) 

networks, UTOPIA 2 for telecommunications and Serial 

RapidIO for DSP-to-DSP communications. This DSP 

consequently includes all the necessary components 

(DMA, RAM (Random Access Memory), input output 

management) required to communicate with a camera 

sensor. Note also that VLIW architectures are 

deterministic and dedicated to embedded hard real-time 

applications. This must be taken into account when 

compared to superscalar GPP (General Purpose 

Processors) based on expensive and consuming memory 

management units, out-of-order units etc.  

Finally, it is clear that the power and the features of 

such DSP family perfectly fit the need of intelligent 

vision system embedded in smart cameras. It should also 

allow designers to build highly scalable camera that can 

follow the latest advances in video compression. 

5 Optimized implementation on a single DSP core 

Our choice for using this multicore DSP platform enables 

us to develop an academic H264/AVC codec [31] in our 

LETI laboratory (Laboratory of Electronics and 

Information Technologies) for future research and 

development targeting embedded video applications. 

Standard compliant LETI’s codec was developed and 

tested first on a PC environment for validation and then 

migrated to TMS320C6472 DSP platform. This work 

will also benefit for our future H265 implementation. 

To efficiently take advantages of multicore 

technology and the potential parallelism presented in the 

H264 standard, we must as a first step, elaborate an 

optimized H264/AVC architecture on a single DSP core 

and then move to a multicore implementation.  This step 

consists of designing a data model that exploits DSP core 

architecture and especially internal memory which is 

faster than external SDRAM memory. Each core of 

TMS320C6472 DSP has 608 KB internal memory 

LL2RAM shared between program and data. Preferably 

and to the extent of possible, we should load both 

program and data within LL2RAM.  For that reason, two 

implementations are proposed [32].  

5.1 «MB level »  implementation 

This implementation is the conventional data structure 

processing in H264/AVC standard. It is based on 

encoding a MB followed by another MB until finishing 

the entire frame MBs. The principle of this first proposed 

architecture is detailed as follows: the program is loaded 

into internal memory LL2RAM. The current, the 

reconstructed, the reference frames and the bitstream are 

stored into external SDRAM memory regarding their 

important sizes for HD resolution. In order to avoid 

working directly with slow external memory, some data 

are moved into internal memory such as current MB, 

search window and reconstructed MB for the 3 YCrCb 
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components. The design of the MB level implementation 

is presented in Fig. 5. It highlights the memory 

allocations for the luminance components. 
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Fig. 5 « MB level » implementation 

The DSP core transfers the current MB (16x16) and the 

search window (48x48) respectively from the current and 

the reference frames from external to internal memory. 

Consequently, the data processing can be performed by 

the DSP core without external memory accesses. The 

reconstructed MB (20x20), extended by 4 pixels at the 

left and the top needed in the MB filtering, is transferred 

from the local memory into external memory at the 

reconstructed frame buffer. This process is repeated until 

completion of the entire current frame MBs. The most 

important advantage of this architecture is its adaptability 

to any DSP even in the case of small internal memory. In 

fact, only 55.54 KB of internal memory space is required 

for 720p HD (1280x720) resolution. The major 

drawbacks of this architecture are the multiple accesses 

to external memory for each required to transfer a current 

or a reconstructed MB. It also needs to store the left and 

top neighboring pixels used in the prediction and filtering 

of the next MBs after each MB processing. 

5.2 « MBs row level» implementation  

To avoid the first architecture’s drawbacks, a second 

implementation is proposed. The principle of this 

implementation as illustrated in Fig. 6 consists of loading 

one MBs row (16 x frame_width) from the current frame 

and 3 MBs rows (48 x (16+ frame_width +16)) for the 

search window from the reference frame to the 

appropriate buffers created in internal memory. The DSP 

core encodes the whole current MBs row without 

external memory access. Then, the reconstructed MBs 

row (20 x (16+ frame_width +16)) is transferred from 

LL2RAM to SDRAM memory in the reference frame. 

Thus, it is not necessary to create another memory buffer 

for the reconstructed frame. The reference frame buffer 

can be exploited to store the reconstructed MBs row; 

since overwritten data will not be used (they are already 

copied into the 3 MBs rows of the search window). 

Moving to the second current MBs row, it is not 

necessary to load 3 MBs rows for the search window 

from the reference frame, just shift up the last two MBs 

rows of the search window in the internal memory and 

bring the third from the fourth MBs row of the reference 

image. 
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Fig. 6 « one MBs row level » implementation 

This approach outstandingly reduces the access to 

external memory. Thus only one memory access to 

external memory for reading one MB row instead of 80 

accesses to read 80 MBs that form a MB row for HD 

720p frame (1280/16=80). The same prevail for saving 

the reconstructed MB row. In addition, when proceeding 

at a MBs row level architecture, all the left boundaries 

required in the next MB prediction and filtering are 

already available in internal memory, so the left 

neighboring pixels backup is removed. Moreover, this 

implementation reduces the backup of TOP boundaries, 

since storing top boundaries is required only one time 

after finishing processing the whole MBs row, whereas, 

the MB level implementation needs to store top 

neighboring pixels after processing each current MB. 

5.3 Experimental Results for the mono-core 

implementation  

In this preliminary work, the two proposed 

architectures are implemented on a single DSP core 

TMS320C6472 running at 700 MHz using the 

H264/AVC LETI’s codec. Experimental simulations are 

performed on the most commonly used video test 

sequences with CIF resolution downloaded from this 

website [33].  These sequences are a raw data in the 

YUV 4:2:0 format recommended by the Joint Video 

Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 

organizations [34] that developed the H264 codec. The 

number of processed frame is 300. The GOP size is equal 

to 8 as follows: IPPPPPP IPPP....P. Quantification 

Parameter (QP) is 30. Table 1 shows the performance of 
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the two implementations based on encoding speed. The 

second architecture can save up to 18.71% of run-time. 

Using a single DSP core, encoding time is yet close to 

real-time (25 f/s) for CIF resolution. 

Table 1 Performance evaluation of the proposed 

implementations for CIF (352x288) resolution 

CIF sequence 

 

Encoding speed  

using MB level 

implementation (f/s) 

Encoding speed  using 

MB row level 

implementation (f/s) 

Foreman 19.72 24.19 

Akiyo 20.69 24.73 

News 21.76 25.21 

Container 20.39 24.80 

Tb420 18.64 22.79 

Mobile 18.73 22.77 

Speed 

average (f/s) 
19.98 24.58 

 

After verifying that «MBs row level» architecture is the 

well optimized implementation, this architecture is then 

evaluated for higher resolutions: SD (720x480) and HD 

(1280x720). Table 2 presents the achieved encoding 

speeds when applying «MBs row level» architecture on a 

single DSP core for several uncompressed YUV 4:2:0 

SD and HD video sequences. At first, these video 

sequences are downloaded in a compressed HD RGB 

format from the video-sharing website YouTube; then 

they are converted into YUV 4:2:0 format and resized 

into SD resolution using OpenCv library [35].  The 

number of processed frames is 1200 frames, QP=30 and 

GOP size is equal to 8. 

Table 2 Performance evaluation of the second 

implementations for SD and HD resolutions on a single 

DSP core 

sequence 

 

Encoding speed  

for SD resolution 

on a single DSP 

core (f/s) 

Encoding speed  

for HD resolution 

on a single DSP 

core (f/s) 

Planets 7.047 2.663 

Power of 

natures 
7.193 2.651 

Turtle 6.827 2.609 

Vague 7.03 2.696 

Nature 7.36 2.756 

Bird 7.928 2.999 

Speed average 

(f/s) 
7.23 2.73 

 

It is clear that mono-core processors with low CPU 

frequency cannot meet the real-time requirement for high 

resolution videos. Thus, moving to a multicore 

implementation and exploiting the H264 parallelism are 

mandatory to reach real-time encoding for VGA and SD 

resolutions and improve the encoding speed for HD 

resolution. 

6 Multicore implementation using Frame Level 

Parallelism 

6.1 Implementation strategy 

From previous works detailed in the past section, the 

conclusion that could be taken is that each of the 

partitioning method has as many advantages as 

drawbacks. 1) GOP level parallelism ensures a good 

speedup but involves very high encoding latency. 2) 

Frame level parallelism improves efficiently the 

encoding run-time with low latency. 3) Slice Level 

parallelism improves the encoding speed but induces 

PSNR degradation and bitrate increase. 4) Load balance, 

large data transfer and synchronizations between 

processors are the important drawbacks of MB level 

parallelism. 5) Regarding functional partitioning, this 

approach is not suitable for H.264/AVC encoder [10] due 

to two reasons. First, large amount of data transfer 

among processors will demand a large system bandwidth 

to assure inter-processor communication. Second, 

functions in H.264/AVC encoder have different load 

balance, so it is hard to equally map functions among 

processors. Thus, the final performance is always 

restricted by the processor with the heaviest load. Based 

on these observations, the frame level parallelism 

approach will be applied in order to enhance the 

encoding speed and get a low latency without inducing 

any rate distortion (PSNR degradation and bitrate 

increase).  

Our multicore implementation using FLP approach 

will exploit the optimized mono-core architecture 

implemented on a single DSP core which is the «MBs 

row level» implementation. The approach of our real-

time demo implementation is described in Fig. 7. 

In a preliminary step, our DSP platform is connected 

to a personal computer (PC) via a Gigabit Ethernet link 

in order to achieve real-time TCP/IP (transmission 

Control Protocol /Internet Protocol) data transfers 

between them. The PC itself is linked to a Universal 

Serial Bus (USB) HD webcam to capture RAW video 

and send it to DSP for encoding. Once the DSP will be 

integrated in a smart camera system, the PC will no 

longer be needed.  

In this work, the personal computer is used only for 

validation purposes because our platform has not yet a 

frame grabber interface. A commonly used video test 

sequences in YUV 4:2:0 format are used for encoding. 

Then, the similarity between the output of our DSP 

implementation and that of the PC implementation is 

verified. Even the Ethernet data transfer is used only to 

ensure a real-time data transfer but it is not our principle 

aim. The main of our work is to bring out the efficiency 

of our processor to meet real-time constraint for the most 

complex application (video encoding). So if this 

processor will be the kernel of a smart camera platform, 

several image and video processing applications could be 

performed and real-time constraint could be satisfied.  
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Fig. 7 Encoding demo using Frame Level parallelism algorithm 

The image acquisition will be in real-time and in this 

case, TCP/IP data transfers with Gigabit Ethernet will not 

be required since the camera interface will be directly 

connected with the DSP memory. This work may 

encourage producers to develop a new generation of 

smart cameras based on multicore DSPs that can perform 

a sophisticated image and video processing applications 

and capable to satisfy real-time constraint. 

 As our DSP platform includes 6 DSP cores, the first 

core “core0” is assigned as a master. It executes a TCP 

server program. It is devoted to establish TCP/IP 

connection with the client (PC) exploiting Texas 

Instruments (TI) NDK library (Network Developer’s Kit 

[36]). In a first step, it receives the current frames sent by 

the PC after camera capture and stores them into the 

external memory which is a shared memory between all 

the DSP cores. The 5 remaining DSP cores are used to 

encode the 5 received frames. For each core, a memory 

section is reserved to store the current frame (SRC), the 

reconstructed frame (RECT, which will be the reference 

frame for the next core) and finally a bitstream buffer 

where the bitstream will be stored. After encoding, the 

core0 server sends the bitstream of all encoded frames to 

the client (PC) in order to store or display it. Into the 

internal program memory of core0, a TCP server program 

is loaded to establish connection between the DSP and the 

PC. H264/AVC algorithm is loaded into each internal 

program memory of the 5 remaining cores. Thus, a C++ 

project is developed and executed on the PC in order to 

capture video from the camera. Our program is based on 

OpenCv library which is used to convert the captured 

frames from RGB to YCrCb 4:2:0 format. A TCP socket 

(@IP, Port number) is created to transmit data between 

core0 (server) and the PC (client).  

When applying frame level parallelism and exploiting 

«One MBs row level implementation», core i starts 

encoding its appropriate frame only if core i-1 has 

finished encoding at least 3 MBs rows from the previous 

frame. These 3 MBs rows will be used as the search 

window for the motion estimation of the first MBs row 

of the current frame processed by core i (see section 5.2). 

Thus, inter data dependency is respected and 

consequently, no rate distortion will be provided. 

The steps of encoding a video sequence using FLP 

are detailed as follows (Cf. Fig. 8): 

 After establishing connection between the PC and the 

DSP, core0 receives 5 frames from the PC as 5 cores are 

devoted to encoding. Each frame is loaded into the SRC 

buffer of each remaining core (1-5). 

 When the reception of the 5 current frames is 

completed, core0 sends 5 inter processor communication 

interruption events (IPC) to cores 1-5; which are in a wait 

state for an interruption event from core0; to indicate that 

SRC frames are already in external memory so they can 

start encoding. 

 Core1 is the first core that begins encoding. Upon 

completion encoding the first 3 MBs rows of the SRC 

frame, it sends an IPC to the next core (core2) which itself 

is in a wait state for an interruption from core1 to start 

encoding its appropriate frame. The same procedure will 

be reproduced from core3 to core5. 

 To avoid that core i exceeds core i-1 (which is 

possible because the load balance is not uniform between 

successive frames and it could give an erroneous result), 

the encoding of the next MBs row is conditioned with the 

reception of an IPC from the previous core. Thus, each 

core will send an IPC to its next core after encoding a 

MBs row that its index is higher than 3. Since each core 

starts encoding after its previous core finishes encoding 3 

MBs rows, it should not wait an IPC from the previous 

core to encode the last 2 MBs rows of each SRC frame; 

otherwise encoding will be blocked by waiting an 

incoming IPC. As a result, each core will totally send 

Max_MBs_rows - 2 interruptions to the next core. When 

all cores finish encoding the current frames and 

specifically core5 which is the last core that finishes its 

task, cores1 to 5 send 5 IPCs to core0 which is in a wait 

state to indicate that the bitstream of 5 frames is ready in 

external memory to be transferred to the PC. 
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Fig. 8 The chronological steps of the Frame Level Parallelism approach on the multicore DSP TMS320C6472

 When receiving these 5 IPCs, core0 sends the 

bitstream of the 5 frames to PC via the Gigabit Ethernet 

link. 

 After the end of bitstream receiving, the PC captures 

another 5 frames and sends them to core0. The same work 

thereby will be reproduced. 

6.2 Cache coherency 

Multicore processing often leads to cache coherency 

problem. This is due to the simultaneous access of two or 

more cores with a separate cache memory for each core 

to the same location in a shared memory. In general 

purpose multiprocessor, programmers don’t have such 

problem because it is controlled automatically by a 

complex hardware. But in our multicore DSP 

architecture, designers have to control it, since there is no 

such automatic controller. In order to deal with cache 

coherency, the Chip Support Library (CSL library) [37] 

from TI provides two API commands: 

 CACHE_wbL2((void *)XmtBuf, bytecount, 

CACHE_WAIT) to write back the cached data from the 

cache memory to its location in the shared memory. 

 CACHE_invL2((void *)RcvBuf, bytecount, 

CACHE_WAIT) to invalidate the cache lines and force 

the CPU to read data from its location in the shared 

memory. 

In our case, when core0 receives the current frames 

from the PC, it should write back the cached data to 

external memory. In the other side, core1 to core5 should 

invalidate the current SRC frames addresses in the cache 

memory before starting encoding in order to use the 

updated data. Also, when core1 to core5 complete 

encoding, they should write back the bitstreams from the 

cache memory to the external memory in order to 

overcome the cache coherence with core0 which will 

send the bitstream from external memory to the PC. 

Furthermore, among core1 to core5, the problem of cache 

coherency exists because core i will read data (the search 

window) written by core i-1 (Reconstructed MBs row). 

So, the same principle should be applied. Before sending 

an IPC to the next core, a write-back of the reconstructed 

MBs row must be applied. In the other side, the next core 

should invalidate the cached data of the search window 

before starting encoding in order to use an updated data 

written by the previous core. 

6.3 Experimental results for the Frame Level 

Parallelism implementation on 5 DSP cores 

When applying the Frame Level Parallelism method with 

the « One MBs row level architecture» on 5 DSP cores, 

each core is delayed by 3 MBs row from its antecedent. 

Thus, the fifth core is delayed by 12 MBs rows with 

respect to the first core. Let consider T the average time 

needed to encode a MBs row and Max_MBs_row the 

number of MBs rows in a frame equal to the frame’s 

height divided by the MB’s height. So, encoding 5 

frames using FLP approach on 5 DSP cores needs 

Max_MBs_row*T+4*3*T instead of 5* 

Max_MBs_row*T for sequential encoding. Thus, the 

different theoretical speedup factors that could be 

reached for different resolution are computed as follows: 
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For CIF (352x288), Max_MBs_row=288/16=18 and 

s𝑝𝑒𝑒𝑑𝑢𝑝 =
(18𝑥5)𝑥𝑇

(12+18)𝑥𝑇
= 3. 

For SD (720x480), Max_MBs_row=480/16=30 and 

s𝑝𝑒𝑒𝑑𝑢𝑝 =
(30𝑥5)𝑥𝑇

(12+30)𝑥𝑇
= 3.57. 

For HD (1280x720), Max_MBs_row=720/16=45 and 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
(45𝑥5)𝑥𝑇

(12+45)𝑥𝑇
= 3.94. 

Several experiments have been performed on the 

same video sequences used in the mono-core 

implementation in order to correctly evaluate the 

performance of the two implementations. Tables 3, 4 and 

5 illustrate respectively the encoding speeds (f/s) for CIF, 

SD and HD resolutions for the mono-core and the 

multicore implementations. 5 DSP cores, running each at 

700 MHz, are exploited for H264/AVC encoding using 

the FLP approach presented above. The speedup is also 

computed and presented for each video sequence. 

The number of frames to be encoded is 300 frames 

for CIF resolution and 1200 frames for SD and HD 

resolution. The chosen QP is 30 and GOP size is 8 

(IPPPPPP IPPP…). 

When using 5 cores with GOP size equal to 8, the 

intra frame “I” will be firstly processed by the core1 then 

by the core4 for the second GOP then by the core2 for 

the third GOP etc. So, core1 does not process only “I” 

frames but also a “P” frames and in this case, its 

reference frame is the reconstructed frame of the last core 

which is the core5. If GOP size is equal to 5 (IPPPP 

IPPPP…) core1 in this case will process only intra 

frames and as result, load balance is not uniform among 

DSP cores. 

Experiments on 5 DSP cores show that speedup 

factors of 2.92, 3.33 and 3.74 are achieved respectively 

for CIF, SD and HD resolutions.  Experimental results 

approximately verify the theoretical results. Thus, the 

obtained speedup factors are lightly less than the 

maximal speedups. This is due to: inter-communications 

needed among different cores, write-backs and cached 

data invalidations. The proposed FLP implementation 

achieves an encoding speed about 70 f/s for CIF 

resolution surpassing real-time constraint of 25 f/s. 

Encoding speed is efficiently improved for SD and HD 

resolutions compared to mono-core implementation.  

Encoding speed for SD resolution is very close to 

real-time since the average encoding speed is 24 f/s. 

Table 3 Encoding speed for CIF (352x288) resolution  

CIF 

sequence 

 

Encoding speed  

on one core (f/s) 

Encoding speed  

on 5 cores (f/s) 
Speedup 

Foreman 24.19 71.22 2.94 

Akiyo 24.73 72.36 2.93 

News 25.21 74.16 2.94 

Container 24.80 72.18 2.91 

Tb420 22.79 65.66 2.88 

Mobile 22.77 66.99 2.94 

Average 24.58 70.43 2.92 

 

Table 4 Encoding speed for SD (720x480) resolution  

SD 

sequence 

 

Encoding speed  

on one core (f/s) 

Encoding speed  

on 5 cores (f/s) 
Speedup 

Planets 7.047 23.76 3.37 

Power of 

natures 
7.193 23.58 3.27 

Turtle 6.827 23.24 3.40 

Vague 7.03 24.11 3.43 

Nature 7.36 23.63 3.21 

Bird 7.928 26.24 3.31 

Average 7.23 24.09 3.33 

Table 5 Encoding speed for HD (1280x720) resolution  

HD 

sequence 

 

Encoding speed  

on one core (f/s) 

Encoding speed  

on 5  cores (f/s) 
Speedup 

Planets 2.663 10.12 3.80 

Power of 

natures 
2.651 9.78 3.70 

Turtle 2.609 9.96 3.82 

Vague 2.696 10.20 3.78 

Nature 2.756 9.97 3.62 

Bird 2.999 11.09 3.70 

Average 2.73 10.18 3.74 
 

7 Enhanced Frame Level Parallelism approach: 

hiding communication overhead 

The first implementation of the FLP approach improves 

the encoding speed compared to the mono-core 

implementation but does not efficiently exploit the DSP 

cores. A lot of time is wasted (processor waiting data) 

which reduces our multicore implementation efficiency. 

Moreover, communication overhead is not optimized. To 

avoid these drawbacks, this part presents the enhanced 

version of FLP approach based on hiding communication 

overhead. For the first version of the FLP approach, 

core1 to core5 wait that core0 completes the reception of 

5 frames, although encoding can be immediately started 

after the reception of the first frame. Furthermore, core0 

waits that core1 to core5 finish encoding their respective 

frames in order to start sending the bitstreams, although 

it can start sending to the PC any available bitstream. In 

the other side also, during encoding, core0 is in a wait 

state; so this time could be exploited to prepare the next 5 

frames in order to overlap frames encoding and frames 

reading processes. To realize these optimizations, a ping 

pong buffer is used for each SRC frame instead of a 

single buffer used for the first implementation as shown 

in Fig. 9. A multithreading approach is employed on the 

PC side. Three threads are used to manage reading raw 

frames, sending them via Ethernet, receiving encoded 

bitstream and saving it in a file. 

The strategy of our implementation is described in 

Fig. 10 and consists of the following steps: 
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Fig. 9 The enhanced Frame Level Parallelism approach  
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Fig. 10 The chronological steps of Enhanced Frame Level Parallelism on the multicore DSP TMS320C6472 
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 The first thread “thread1” captures the first frame from 

the camera and sends it to core0 which will store it into the 

ping buffer SRC[0] of core1. Core0 sends then an IPC to 

core1 to indicate that it can start encoding its current frame.  

 When receiving an IPC from core0, core1 triggers the 

encoding. At the same time thread1 moves to read and send 

the second frame to core0 which will store it into the ping 

buffer of core2. This step is repeated until receiving of 5 

frames. Thus, each core immediately starts encoding after 

core0 receives its current frame without waiting the 

reception of all the frames. 

 While core1 to core5 encode their frames with the same 

principle as the first FLP implementation, thread1 sends the 

next 5 frames to core0 which will store them into the pong 

buffers SRC[1] for each core. Because encoding process 

takes more time than reading process, communication 

delays are hidden and they do not contribute to the parallel 

run-time. 

 When encoding is achieved on a core i, the bitstream is 

stored into the ping buffer bitstream[0]. Then, core i sends 

an IPC to core0 to inform that it can forward its bitstream to 

the PC. After that, core i starts encoding its pong frame 

stored into SRC[1] without any wait and stores the bitstream 

into the pong buffer bitstream[1] (to not overwrite data 

stored into bitstream[0]). 

 While core i encodes its pong frame, core0 sends the 

ping bitstream [0] corresponding to core i without waiting 

that all cores finish encoding their respective frames. The 

second thread “thread2” receives the ping bitsteams and 

stores them into the ping buffers Bitstream[0][i]. Then, the 

third thread “thread3” writes the bitstreams in a file and at 

the same time thread1 sends the next 5 frames to core0 

which will store them into the ping buffers SRC[0] of each 

core. With this technique, the ping bitstreams writing, the 

pong SRC frames encoding and the next 5 ping SRC frames 

capturing and sending are processed in parallel. 

 The processing is then looped in a reverse order for SRC 

frames and bitstreams through ping pong buffers. 

When looking at Fig. 10, no significant delays have 

occurred. All cores process their respective data without 

any waiting time. The enhanced FLP algorithm efficiently 

exploits the multicore platform. Multithreading algorithm 

with ping pong buffers technique efficiently overlap data 

transfer with encoding process. 

7.1 Experimental results for the Enhanced FLP 

implementation on 5 DSP cores 

To evaluate our enhanced FLP approach implementation in 

terms of encoding speed and speedup factor, several 

experiments have been performed on different video 

sequences with different resolutions as the first 

implementations.  

Table 6, 7 and 8 show respectively the achieved 

encoding speeds and speedup factors for the two 

implementations: the mono-core implementation and the 

enhanced FLP implementation on 5 DSP cores. For SD and 

HD resolutions, 1200 frames are encoded and 300 frames 

for CIF resolution. The used QP is equal to 30 and GOP 

size is 8. The presented results prove that our enhanced 

FLP implementation allows us to meet the real-time 

constraint for CIF and SD resolutions. Our encoder can 

process up to 98 f/s for CIF sequences and 31 f/s for SD 

resolution. Experiments show that a speedup of more than 4 

times is achieved (4.11 for CIF, 4.38 for SD and 4.52 for 

HD). The real-time is not yet achieved for HD resolution 

but our enhanced FLP allows us to save up to 77% of 

encoding time and processes up to 12 f/s instead of 2.73 f/s 

on a single core. 

Table 6 Encoding speed for CIF (352x288) resolution 

between the mono-core and the enhanced FLP 

implementation 

CIF 

sequence 

 

Encoding speed  

on a single core 

(f/s) 

Encoding speed  

on 5 DSP cores 

(f/s) 

Speedup 

Foreman 24.19 99.55 4.11 

Akiyo 24.73 102.08 4.13 

News 25.21 103.77 4.12 

Container 24.80 102.19 4.12 

Tb420 22.79 94.14 4.13 

Mobile 22.77 91.20 4.00 

Average 24.58 98.82 4.11 

Table 7 Encoding speed for SD (720x480) resolution 

between the mono-core and the enhanced FLP 

implementation 

SD 

sequence 

 

Encoding speed  

on a single core 

(f/s) 

Encoding speed  

on 5 DSP cores 

(f/s) 

Speedup 

Planets 7.047 30.70 4.36 

Power of 

natures 
7.193 31.26 4.34 

Tortue 6.827 30.58 4.48 

Vague 7.03 30.83 4.38 

Nature 7.36 32.22 4.38 

Bird 7.928 34.83 4.39 

Average  7.23 31.73 4.38 

Table 8 Encoding speed for HD (1280x720) resolution 

between the mono-core and the Enhanced FLP 

implementation 

HD 

sequence 

 

Encoding speed  

on a single core 

(f/s) 

Encoding speed  

on 5 DSP cores 

(f/s) 

Speedup 

Planets 2.663 12.03 4.52 

Power of 

natures 
2.651 11.93 4.50 

Tortue 2.609 11.71 4.49 

Vague 2.696 12.23 4.54 

Nature 2.756 12.43 4.51 

Bird 2.999 13.59 4.53 

Average 2.73 12.32 4.52 
 

During our measure of the enhanced FLP encoding speed, 

the cost of data transfer is taken into account. The time of 

capturing frames, transferring them to DSP, receiving them 

by core0, and loading them to DSP memory has 

consequently been added to the encoding time in order to 

evaluate the efficiency of our enhancement. 

Experimental results show that our proposed data 

transfer scheduling technique completely hides the 
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communication overhead. The time of data transfers does 

not contribute in the run-time thanks to using the ping pong 

buffer technique and multi-threading processing.  The 

achieved speedup factor is higher than the non-optimized 

FLP since the obtained speedup factor is 4.52x instead of 

3.74x for HD resolution. Encoding speed is significantly 

increased from 24 f/s to 31.73 f/s surpassing the real-time 

compliant for SD resolution. Our proposed enhancement 

efficiently exploits our multicore platform and allows us to 

get a good saving time (77%) for HD resolution.  

Finally, for low and medium video resolutions such as 

CIF, VGA (640x480) and SD, some cores could be free 

which allowing us to exploit them to perform other tasks 

(biometric recognition and access control, texture and 

position detection, surveillance application etc). This will 

give an important advantage for our multicore DSP if 

integrated into a smart camera system. 

It may be noted that several factors are contributed to 

achieve this performance despite that encoding steps, 

detailed above, transmit the idea that there is always a 

simultaneous accesses to the external memory by the 

different cores which may causes a significant latency. 

First, our encoding implementation is based on “MB 

row level architecture”, so each core reads a MB row from 

the external memory to the internal L2 memory. The 

processing will be performed thereafter by the CPU 

between the L1 and L2 level memories which reduces the 

external memory bottleneck situation. Secondly, 128 kbytes 

of L2 memory are configured as cache for each core. Thus, 

access to a memory location triggers a prefetch of a “line” 

of memory locations into cache by the cache controller. 

This allows reducing the cache misses so accelerating 

encoding run-time. Reconstructed fraction and bitstream 

are not copied directly into the external memory after their 

processing but they are kept into the cache memory which 

reduces the external memory access. Third, in addition to 

eight processing units for each core which allow 

performing eight instructions per cycle, code composer 

studio IDE (Integrated Development Environment for DSP 

programming) allows generating an optimized assembler 

code that exploits the maximum of pipeline. Thus, the 

different cores may do not perform the same load 

instruction from the external memory at the same time, a 

core i can perform prefetch instructions, other core can 

perform load instruction and another one can execute ADD 

instructions for example etc. Moreover, our enhanced 

implementation is a pipelined design; there is a timing 

delay between the different cores. So reading current MB 

rows and writing bitstreams are not necessarily performed 

at the same time by all cores. Furthermore, the C6472 

includes also a switch fabric module that provides 

arbitration between the different cores to access the 

external memory which is a 32-bit DDR2-533 SDRAM 

with up to 2133 MBps of throughput. Several test show that 

this bandwidth is enough to support multiple DSP cores 

accessing the DDR2 memory simultaneously [38]. Finally, 

the DDR2 memory on the C6472 EVM contains eight 

banks and every bank can have an open row or page, so 

eight rows can be opened at the same time. This 

dramatically reduces the row switch overhead. 

Table 9 presents a comparison between our approach 

and other implementations performed on several platforms 

and applying different methods of parallelism. Experiments 

show that several implementations have not satisfied the 

real-time constraint. In fact, JM software is not an 

optimized algorithm which makes it hard to reach a real-

time performance.  

Table 9 Comparison of parallelization approaches on different platforms 

approach Our approach [9] [10] [12] [21] [23] [25] 

Partitioning 

method 

Frame  Task  MB region 

partition (MBRP) 

MB/Frame slice GOP  Task  

platform Multicore  DSP 

TMS320C6472 

(5 cores for 

encoding) 

167-core 

asynchronous 

array of simple 

processors  

PC with a P4 

1.7GHz processor  

4 cores 

 

Pentium 4 

processor 

running at 2.8 

GHz  

 

quad 

TMS320C6201 

DSP system 

3 Microblaze 

soft cores 

based on 

XILINX 

FPGA 

NVIDEA’s 

GPU using 

CUDA with 

448 cores 

Reference 

software and 

encoding 

parameters 

LETI’s H264 

codec, baseline 

profile, ME 

algorithm is 

LDPS, search 

range=16, 

Number of 

reference 

frame=1, R-D 

optimization is 

not used, 

entropy coding 

is CAVLC. 

JM baseline 

profile, search 

range=3, ME 

algorithm is 

Diamond 

Search, 

Number of 

reference 

frame=1, 

entropy coding 

is CAVLC. 

JM 10.2 baseline 

profile, ME 

algorithm is the 

Full search, 

Number of 

reference 

frame=1,  

R-D optimization 

is used, entropy 

coding is 

CAVLC. 

JM9.0, one 

reference 

frame for MV, 

search 

range=10, R-D 

optimization is 

used, entropy 

coding is 

CAVLC. 

H263/MPEG4 

baseline 

profile, search 

range=16, ME 

algorithm is 

diamond 

search, entropy 

coding is VLC. 

AVS 

reference code 

RM5.2, 

ME algorithm 

is full search, 

entropy 

coding is 

CAVLC.  

X264 codec, 

search 

range=32, 

ME 

algorithm is 

MRMW, 

Number of 

reference 

frame=1, 

entropy 

coding is 

CAVLC. 

Encoding 

speed (f/s) 

98 f/s for CIF,  

32 f/s for SD 

and 12 f/s for 

HD 

21 f/s for VGA 

(640 x 480) 

0.6 f/s for CIF and 

0.15 f/s for SD 

0.58 f/s for CIF 30 f/s only for 

CIF resolution 

3 f/s for QCIF 30 f/s for 

HD720p 

Distortion 

PSNR/bitrate  

No yes No No yes No Yes  
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Other works achieve real-time processing for low 

resolution but not yet for higher resolutions. GPU’s 

implementation allows achieving real-time for HD 

resolution thanks to the great number of processing cores 

but in the other side, this proposed scheme induces some 

rate distortion (PSNR degradation and bitrate increment). 

GPU platform remains an interesting solution to meet real-

time requirement for high computational applications but it 

is not intended for embedded systems that require low 

power consumption.  Our implementation ensures a good 

encoding scalability without inducing any rate distortion. 

8 Conclusion 

In this paper, an optimized implementation of the 

H264/AVC encoder on a multicore DSP TMS320C6472 

was presented. The Frame Level parallelism approach was 

used to accelerate encoding speed. Hiding communication 

overhead allowed enhancing the FLP implementation and 

improving the speedup factors. Experiments of enhanced 

FLP on 5 DSP cores running at 700 MHz showed that real-

time was achieved by reaching 98 f/s for CIF resolution and 

32 f/s for SD resolution as encoding speeds. Our parallel 

implementation saved up to 77% of encoding time for HD 

resolution and ensured a good encoding speedup factors 

ranging from 4.11 to 4.52 without providing any quality 

degradation or bitrate increase. Our work validated the 

capability of real-time processing, even for high complexity 

applications, by smart camera systems if they are based on 

embedded multicore DSP.  As perspectives, we will try to 

reach real-time encoding for HD resolution by 

implementing our approach on the latest generation of 

Texas Instruments DSP (TMS320C6678). It includes 8 

DSP cores each running at 1.25 GHz, giving a large 

possibility to achieve real-time constraint for HD 

resolution. Also, two partitioning methods could be 

combined in order to improve encoding efficiency. Power 

consumption of our multicore implementation will be taken 

into account to more evaluate our embedded encoder. All 

this work will be reusable to implement the new HEVC-

H265 video standard. This knowledge will be use for our 

next task: H265 real-time implementation on the 

TMS320C6678 DSP. 
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