You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
CameraView/README.md

22 KiB

Build Status Code Coverage

CameraView

CameraView is a well documented, high-level library that makes capturing pictures and videos easy, addressing most of the common issues and needs, and still leaving you with flexibility where needed.

compile 'com.otaliastudios:cameraview:1.2.1'

This was a fork of CameraKit-Android library, originally a fork of Google's CameraView library, but has been completely rewritten. See below for a list of what was done. Feel free to contribute - this is under active development.

Features

  • Seamless image and video capturing
  • Gestures support (tap to focus, pinch to zoom and much more)
  • System permission handling
  • Dynamic sizing behavior
    • Create a CameraView of any size
    • Center inside or center crop behaviors
    • Automatic output cropping to match your CameraView bounds
  • Built-in grid drawing
  • Multiple capture methods
    • Take high-resolution pictures with capturePicture
    • Take quick snapshots as a freeze frame of the preview with captureSnapshot (similar to Snapchat and Instagram)
  • Control HDR, flash, zoom, white balance, exposure correction and more
  • Metadata support for pictures and videos
    • Automatically detected orientation tags
    • Plug in location tags with setLocation() API
  • CameraUtils to help with Bitmaps and orientations
  • Lightweight, no dependencies, just support ExifInterface
  • Works down to API level 15

Docs

Usage

To use the CameraView engine, simply add a CameraView to your layout:

<com.otaliastudios.cameraview.CameraView
    android:id="@+id/camera"
    android:keepScreenOn="true"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content" />

CameraView has lots of XML attributes, so keep reading. Make sure you override onResume, onPause and onDestroy in your activity or fragment, and call CameraView.start(), stop() and destroy().

@Override
protected void onResume() {
    super.onResume();
    cameraView.start();
}

@Override
protected void onPause() {
    super.onPause();
    cameraView.stop();
}

@Override
protected void onDestroy() {
    super.onDestroy();
    cameraView.destroy();
}

Capturing Images

To capture an image just call CameraView.capturePicture(). Make sure you setup a CameraListener to handle the image callback.

camera.addCameraListener(new CameraListener() {
    @Override
    public void onPictureTaken(byte[] picture) {
        // Create a bitmap or a file...
        // CameraUtils will read EXIF orientation for you, in a worker thread.
        CameraUtils.decodeBitmap(picture, ...);
    }
});

camera.capturePicture();

You can also use camera.captureSnapshot() to capture a preview frame. This is faster, though will ensure lower quality output.

Capturing Video

To capture video just call CameraView.startRecordingVideo(file) to start, and CameraView.stopRecordingVideo() to finish. Make sure you setup a CameraListener to handle the video callback.

camera.addCameraListener(new CameraListener() {
    @Override
    public void onVideoTaken(File video) {
        // The File is the same you passed before.
        // Now it holds a MP4 video.
    }
});

// Select output file. Make sure you have write permissions.
File file = ...;

// Record a 2500 ms video:
camera.startRecordingVideo(file, 2500);

// Full version
camera.startRecordingVideo(file);
camera.postDelayed(new Runnable() {
    @Override
    public void run() {
        // This will trigger onVideoTaken().
        camera.stopRecordingVideo();
    }
}, 2500);

Other camera events

Make sure you can react to different camera events by setting up one or more CameraListener instances. All these are executed on the UI thread.

camera.addCameraListener(new CameraListener() {

    /**
     * Notifies that the camera was opened.
     * The options object collects all supported options by the current camera.
     */
    @Override
    public void onCameraOpened(CameraOptions options) {}

    /**
     * Notifies that the camera session was closed.
     */
    @Override
    public void onCameraClosed() {}

    /**
     * Notifies that a picture previously captured with capturePicture()
     * or captureSnapshot() is ready to be shown or saved.
     *
     * If planning to get a bitmap, you can use CameraUtils.decodeBitmap()
     * to decode the byte array taking care about orientation.
     */
    @Override
    public void onPictureTaken(byte[] picture) {}

    /**
     * Notifies that a video capture has just ended. The file parameter is the one that
     * was passed to startCapturingVideo(File), or a fallback video file.
     */
    @Override
    public void onVideoTaken(File video) {}
    
    /**
     * Notifies that the device was tilted or the window offset changed.
     * The orientation passed can be used to align views (e.g. buttons) to the current
     * camera viewport so they will appear correctly oriented to the user.
     */
    @Override
    public void onOrientationChanged(int orientation) {}

    /**
     * Notifies that user interacted with the screen and started focus with a gesture,
     * and the autofocus is trying to focus around that area.
     * This can be used to draw things on screen.
     */    
    @Override
    public void onFocusStart(PointF point) {}
    
    /**
     * Notifies that a gesture focus event just ended, and the camera converged
     * to a new focus (and possibly exposure and white balance).
     */
    @Override
    public void onFocusEnd(boolean successful, PointF point) {}
    
    /**
     * Noitifies that a finger gesture just caused the camera zoom
     * to be changed. This can be used, for example, to draw a seek bar.
     */
    @Override
    public void onZoomChanged(float newValue, float[] bounds, PointF[] fingers) {}
    
    /**
     * Noitifies that a finger gesture just caused the camera exposure correction
     * to be changed. This can be used, for example, to draw a seek bar.
     */
    @Override 
    public void onExposureCorrectionChanged(float newValue, float[] bounds, PointF[] fingers) {}
    
    /**
     * Notifies that an error occurred in any of the previously called methods.
     * The default implementation will just throw the original exception again to prevent missing
     * error handling. As soon as this method was overridden at least once (without calling the
     * super method or re-throwing the exception), the default behavior will be disabled. So pay
     * attention to not swallowing any exceptions.
     */
    @Override 
    public void onError(CameraException exception) {
        throw exception;
    }

});

Gestures

CameraView listen to lots of different gestures inside its bounds. You have the chance to map these gestures to particular actions or camera controls, using mapGesture(). This lets you emulate typical behaviors in a single line:

cameraView.mapGesture(Gesture.PINCH, GestureAction.ZOOM); // Pinch to zoom!
cameraView.mapGesture(Gesture.TAP, GestureAction.FOCUS_WITH_MARKER); // Tap to focus!
cameraView.mapGesture(Gesture.LONG_TAP, GestureAction.CAPTURE); // Long tap to shoot!

Simple as that. More gestures are coming. There are two things to be noted:

  • Not every mapping is valid. For example, you can't control zoom with long taps, or start focusing by pinching.
  • Some actions might not be supported by the sensor. Check out CameraOptions to know what's legit and what's not.
Gesture (XML) Description Can be mapped to
PINCH (cameraGesturePinch) Pinch gesture, typically assigned to the zoom control. zoom exposureCorrection none
TAP (cameraGestureTap) Single tap gesture, typically assigned to the focus control. focus focusWithMarker capture none
LONG_TAP (cameraGestureLongTap) Long tap gesture. focus focusWithMarker capture none
SCROLL_HORIZONTAL (cameraGestureScrollHorizontal) Horizontal movement gesture. zoom exposureCorrection none
SCROLL_VERTICAL (cameraGestureScrollVertical) Vertical movement gesture. zoom exposureCorrection none

Dynamic Sizing Behavior

CameraView has a smart measuring behavior that will let you do what you want with a few flags. Measuring is controlled simply by layout_width and layout_height attributes, with this meaning:

  • WRAP_CONTENT : try to stretch this dimension to respect the preview aspect ratio.
  • MATCH_PARENT : fill this dimension, even if this means ignoring the aspect ratio.
  • Fixed values (e.g. 500dp) : respect this dimension.

You can have previews of all sizes, not just the supported presets. Whaterever you do, the preview will never be distorted.

Center inside

You can emulate a center inside behavior (like the ImageView scaletype) by setting both dimensions to wrap_content. The camera will get the biggest possible size that fits into your bounds, just like what happens with image views.

<com.otaliastudios.cameraview.CameraView
    android:layout_width="wrap_content"
    android:layout_height="wrap_content" />

This means that the whole preview is visible, and the image output matches what was visible during the capture.

Center crop

You can emulate a center crop behavior by setting both dimensions to fixed values or to MATCH_PARENT. The camera view will fill the rect. If your dimensions don't match the aspect ratio of the internal preview surface, the surface will be cropped to fill the view, just like android:scaleType="centerCrop" on an ImageView.

<com.otaliastudios.cameraview.CameraView
    android:layout_width="match_parent"
    android:layout_height="match_parent" />

This means that part of the preview is hidden, and the image output will contain parts of the scene that were not visible during the capture. If this is a problem, see cameraCropOutput.

Camera controls

Most camera parameters can be controlled through XML attributes or linked methods.

<com.otaliastudios.cameraview.CameraView
    android:id="@+id/camera"
    android:layout_width="match_parent"
    android:layout_height="wrap_content"
    android:keepScreenOn="true"
    app:cameraFacing="back"
    app:cameraFlash="off"
    app:cameraGrid="off"
    app:cameraSessionType="picture"
    app:cameraCropOutput="false"  
    app:cameraJpegQuality="100"
    app:cameraVideoQuality="480p"
    app:cameraWhiteBalance="auto"
    app:cameraHdr="off"
    app:cameraAudio="on"
    app:cameraPlaySounds="true"/>
XML Attribute Method Values Default Value
cameraSessionType setSessionType() picture video picture
cameraFacing setFacing() back front back
cameraFlash setFlash() off on auto torch off
cameraGrid setGrid() off draw3x3 draw4x4 drawPhi off
cameraCropOutput setCropOutput() true false false
cameraJpegQuality setJpegQuality() 0 < n <= 100 100
cameraVideoQuality setVideoQuality() lowest highest maxQvga max480p max720p max1080p max2160p max480p
cameraWhiteBalance setWhiteBalance() auto incandescent fluorescent daylight cloudy auto
cameraHdr setHdr() off on off
cameraAudio setAudio() off on on
cameraPlaySounds setPlaySounds() true false true

cameraSessionType

What to capture - either picture or video. This has a couple of consequences:

  • Sizing: capture and preview size are chosen among the available picture or video sizes, depending on the flag. When picture, we choose the max possible picture size and adapt the preview. When video, we respect the videoQuality choice and adapt the picture and the preview size.
  • Picture capturing: due to sizing behavior, capturing pictures in video mode might lead to inconsistent results. In this case it is encouraged to use captureSnapshot instead, which will capture preview frames. This is fast and thus works well with slower camera sensors.
  • Picture capturing: while recording a video, image capturing might work, but it is not guaranteed (it's device dependent)
  • Permission behavior: when requesting a video session, the record audio permission will be requested. If this is needed, the audio permission should be added to your manifest or the app will crash.
cameraView.setSessionType(SessionType.PICTURE);
cameraView.setSessionType(SessionType.VIDEO);

cameraFacing

Which camera to use, either back facing or front facing.

cameraView.setFacing(Facing.BACK);
cameraView.setFacing(Facing.FRONT);

cameraFlash

Flash mode, either off, on, auto or torch.

cameraView.setFlash(Flash.OFF);
cameraView.setFlash(Flash.ON);
cameraView.setFlash(Flash.AUTO);
cameraView.setFlash(Flash.TORCH);

cameraGrid

Lets you draw grids over the camera preview. Supported values are off, draw3x3 and draw4x4 for regular grids, and drawPhi for a grid based on the golden ratio constant, often used in photography.

cameraView.setGrid(Grid.OFF);
cameraView.setGrid(Grid.DRAW_3X3);
cameraView.setGrid(Grid.DRAW_4X4);
cameraView.setGrid(Grid.DRAW_PHI);

cameraCropOutput

Whether the output picture should be cropped to fit the aspect ratio of the preview surface. This can guarantee consistency between what the user sees and the final output, if you fixed the camera view dimensions. This does not support videos.

cameraJpegQuality

Sets the JPEG quality of pictures.

cameraView.setJpegQuality(100);
cameraView.setJpegQuality(50);

cameraVideoQuality

Sets the desired video quality.

cameraView.setVideoQuality(VideoQuality.LOWEST);
cameraView.setVideoQuality(VideoQuality.HIGHEST);
cameraView.setVideoQuality(VideoQuality.MAX_QVGA);
cameraView.setVideoQuality(VideoQuality.MAX_480P);
cameraView.setVideoQuality(VideoQuality.MAX_720P);
cameraView.setVideoQuality(VideoQuality.MAX_1080P);
cameraView.setVideoQuality(VideoQuality.MAX_2160P);

cameraWhiteBalance

Sets the desired white balance for the current session.

cameraView.setWhiteBalance(WhiteBalance.AUTO);
cameraView.setWhiteBalance(WhiteBalance.INCANDESCENT);
cameraView.setWhiteBalance(WhiteBalance.FLUORESCENT);
cameraView.setWhiteBalance(WhiteBalance.DAYLIGHT);
cameraView.setWhiteBalance(WhiteBalance.CLOUDY);

cameraHdr

Turns on or off HDR captures.

cameraView.setHdr(Hdr.OFF);
cameraView.setHdr(Hdr.ON);

cameraAudio

Turns on or off audio stream while recording videos.

cameraView.setAudio(Audio.OFF);
cameraView.setAudio(Audio.ON);

cameraPlaySounds

Controls whether we should play platform-provided sounds during certain events (shutter click, focus completed). Please note that:

  • on API < 16, this flag is always set to false
  • the Camera1 engine will always play shutter sounds regardless of this flag
cameraView.setPlaySounds(true);
cameraView.setPlaySounds(false);

Other APIs

Other APIs not mentioned above are provided, and are well documented and commented in code.

Method Description
isStarted() Returns true if start() was called succesfully. This does not mean that camera is open or showing preview.
mapGesture(Gesture, GestureAction) Maps a certain gesture to a certain action. No-op if the action is not supported.
getGestureAction(Gesture) Returns the action currently mapped to the given gesture.
clearGesture(Gesture) Clears any action mapped to the given gesture.
getCameraOptions() If camera was started, returns non-null object with information about what is supported.
getExtraProperties() If camera was started, returns non-null object with extra information about the camera sensor. Not very useful at the moment.
setZoom(float), getZoom() Sets a zoom value, where 0 means camera zoomed out and 1 means zoomed in. No-op if zoom is not supported, or camera not started.
setExposureCorrection(float), getExposureCorrection() Sets exposure compensation EV value, in camera stops. No-op if this is not supported. Should be between the bounds returned by CameraOptions.
toggleFacing() Toggles the facing value between Facing.FRONT and Facing.BACK.
toggleFlash() Toggles the flash value between Flash.OFF, Flash.ON, and Flash.AUTO.
setLocation(Location) Sets location data to be appended to picture/video metadata.
setLocation(double, double) Sets latitude and longitude to be appended to picture/video metadata.
getLocation() Retrieves location data previously applied with setLocation().
startAutoFocus(float, float) Starts an autofocus process at the given coordinates, with respect to the view dimensions.
getPreviewSize() Returns the size of the preview surface. If CameraView was not constrained in its layout phase (e.g. it was wrap_content), this will return the same aspect ratio of CameraView.
getSnapshotSize() Returns getPreviewSize(), since a snapshot is a preview frame.
getPictureSize() Returns the size of the output picture. The aspect ratio is consistent with getPreviewSize().

Take also a look at public methods in CameraUtils, CameraOptions, ExtraProperties, CameraLogger.

Permissions behavior

CameraView needs two permissions:

  • android.permission.CAMERA : required for capturing pictures and videos
  • android.permission.RECORD_AUDIO : required for capturing videos with Audio.ON (the default)

You can handle permissions yourself and then call CameraView.start() once they are acquired. If they are not, CameraView will request permissions to the user based on whether they are needed. In that case, you can restart the camera if you have a successful response from onRequestPermissionResults().

Manifest file

The library manifest file is not strict and only asks for camera permissions. This means that:

  • If you wish to record videos with Audio.ON (the default), you should also add android.permission.RECORD_AUDIO to required permissions
<uses-permission android:name="android.permission.RECORD_AUDIO"/>
  • If you want your app to be installed only on devices that have a camera, you should add:
<uses-feature
    android:name="android.hardware.camera"
    android:required="true"/>

If you don't request this feature, you can use CameraUtils.hasCameras() to detect if current device has cameras, and then start the camera view.

Roadmap

This is what was done since the library was forked. I have kept the original structure, but practically all the code was changed.

  • a huge number of serious bugs fixed
  • decent orientation support for both pictures and videos
  • less dependencies
  • EXIF support
  • real tap-to-focus support
  • pinch-to-zoom support
  • simpler APIs, docs and heavily commented code
  • new captureSnapshot API
  • new setLocation and setWhiteBalance APIs
  • new setGrid APIs, to draw 3x3, 4x4 or golden ratio grids
  • option to pass a File when recording a video
  • other minor API additions
  • replacing Method and Permissions stuff with simpler sessionType
  • smart measuring and sizing behavior, replacing bugged adjustViewBounds
  • measure CameraView as center crop or center inside
  • add multiple CameraListeners for events
  • gesture framework support, map gestures to camera controls
  • pinch gesture support
  • tap & long tap gesture support
  • scroll gestures support
  • MediaActionSound support
  • Hdr controls
  • zoom and exposure correction controls
  • Tests!
  • CameraLogger APIs for logging and bug reports
  • Better threading, start() in worker thread and callbacks in UI

These are still things that need to be done, off the top of my head:

  • Camera2 integration
  • check onPause / onStop / onSaveInstanceState consistency
  • add a setPreferredAspectRatio API to choose the capture size. Preview size will adapt, and then, if let free, the CameraView will adapt as well
  • animate grid lines similar to stock camera app
  • add onRequestPermissionResults for easy permission callback
  • better error handling, maybe extending the current onError(e) method to handle more use cases, or have each public method return a boolean
  • decent code coverage

Device-specific issues

There are a couple of known issues if you are working with certain devices. The emulator is one of the most tricky in this sense.

  • Devices, or activities, with hardware acceleration turned off: this can be the case with emulators. In this case we will use SurfaceView as our surface provider. That is intrinsically flawed and can't deal with all we want to do here (runtime layout changes, scaling, etc.). So, nothing to do in this case.
  • Devices with no support for MediaRecorder: the emulator does not support it, officially. This means that video/audio recording is flawed. Again, not our fault.